ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL

Facultad de Ingeniería en Ciencias de la Tierra

"ANÁLISIS ESTRUCTURAL Y RESPUESTA SÍSMICA DEL EDIFICIO TORRE 4 DEL ESTADIO CAPWELL -ESTUDIO DE MÉTODOS DE PROTECCIÓN SÍSMICA PARA LA ESTRUCTURA."

PROYECTO INTEGRADOR

Previa a la obtención del título de:

INGENIERO CIVIL

Presentado por:

RODDY ALEJANDRO HERRERA INGA.

GÉNESIS ZOILA FIGUEROA PALACIOS

GUAYAQUIL – ECUADOR

AÑO - 2016

AGRADECIMIENTO

A los pilares fundamentales que me guían por el camino del bien, mi primer sustento y motivación diaria, Dios y mi familia.

A mis amigos, apoyo incondicional en cada momento de la vida, y a todos aquellos que han colaborado en mi formación personal y profesional.

Roddy Alejandro Herrera Inga

AGRADECIMIENTO

A Dios, fuente de mi alegría y amor por todas las cosas, a mi familia y amigos que me han acompañado en este caminar.

A todos los profesores responsables de mi formación académica.

Génesis Zoila Figueroa Palacios

DEDICATORIA

A todos aquellos que deseamos el progreso de nuestra nación, respetando al prójimo y en busca de medios que aseguren la calidad de vida de nuestras futuras generaciones.

Roddy Alejandro Herrera Inga

.

DEDICATORIA

A todas las personas que se esfuerzan cada día, que desempeñan con amor lo más intrascendente de las acciones diarias con una sonrisa en los labios, dando así testimonio de la alegría profunda que viene de Dios.

Génesis Zoila Figueroa Palacios.

TRIBUNAL DE EVALUACIÓN

Ing. Miguel Chávez M., M.Sc. Ph.D DIRECTOR DE PROYECTO

Ing. Alby Aguilar P., M.Sc. COORDINADORA DE INGENIERÍA CIVIL

DECLARACIÓN EXPRESA

"La responsabilidad del contenido de este Trabajo de Titulación, nos corresponde exclusivamente, y el patrimonio intelectual de la misma a la ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL"

(Reglamento de Graduación de la ESPOL)

Roddy Alejandro Herrera Inga

Génesis Zoila Figueroa Palacios

RESUMEN

En el presente trabajo se evaluará el desempeño sísmico de la denominada "Torre 4" del Estadio George Capwell, ubicada en las calles General Gómez y Pío Montufar, actualmente en proceso de construcción. Adicionalmente se presentan alternativas para control y protección sísmica de la estructura mediante la implementación de métodos que actualmente son desarrollados en distintos países del mundo con alto riesgo sísmico como lo es Ecuador.

En base a los planos entregados por la empresa contratista, se genera el modelo de la estructura mediante el software ETABS v15.2.0, del análisis se obtiene el periodo de la estructura y sus desplazamientos máximos producto de las combinaciones que incluyen el efecto del sismo según lo estipulado en la NEC2015.

Se considera el uso de un sistema sísmico basal denominado HDRB y disipadores pasivos tanto histeréticos como viscoelásticos para lograr un mejor comportamiento de la estructura frente a estas cargas, se realiza su modelamiento y se obtienen los resultados para cada alternativa propuesta.

Finalmente se establece el uso de disipadores pasivos histeréticos mediante un análisis de multicriterios, mostrando ser el más viable en cuanto a los requerimientos esenciales de la estructura en cuestión. Se realiza su diseño preliminar y análisis de costos para la construcción de dicho sistema.

ÍNDICE GENERAL

RESUMEN		VIII
ÍNDICE GENERA	L	X
ABREVIATURAS		XIII
SIMBOLOGÍA		. XIV
ÍNDICE DE FIGU	RAS	. XVI
ÍNDICE DE TABL	AS	. XIX
CAPÍTULO 1		23
1. GENERALID	ADES	23
1.1. INTRODU	CCIÓN	23
1.2. ANTECED	DENTES	25
1.3. JUSTIFIC	ACIÓN	27
1.4. UBICACIÓ)N	28
1.5. OBJETIVO	DS: GENERAL Y ESPECÍFICOS	29
1.5.1. Obje	etivo general	29
1.5.2. Obje	etivos específicos	29
CAPÍTULO 2		31
2. INFORMACIO	ÓN BASE	31
2.1. INFORMA	CIÓN DISPONIBLE	31
2.1.1. Cód	igos y referencias bibliográficas específicas de diseño	31
2.1.2. Para	ámetros de diseño de la estructura	32
2.2. CONDICIO	ÓN SÍSMICA NACIONAL Y NORMA ECUATORIANA DE LA CONSTRUCCIÓ)N
NEC SE-DS		34
2.2.1. Esp	ectro elástico de diseño	35
2.2.2. Esp	ectro inelástico de diseño	43
2.2.3 COEFICIEN	ITE DE IMPORTANCIA I: ESTRUCTURAS DE OCUPACIÓN ESPECIAL Y	
ESENCIAL	·	47
2.3. ESTUDIO	DE SUELO Y CIMENTACIÓN DE LA TORRE 4	51
2.3.1. Estu	idio de suelo en zona de implantación	51
2.3.2. Des	cripción de la cimentación	53
2.4. SISTEMA	S DE PROTECCIÓN SÍSMICA PARA EDIFICACIONES	54
2.4.1. Siste	ema de Control Activo	59
2.4.2. Siste	ema Pasivo de disipación de energía	60
2.4.3. Siste	ema de aislación sísmica base	62
CAPITULO 3		65
3. ANALISIS DE	E LA ESTRUCTURA	65

3.1. CAR	ACTERÍSTICAS FÍSICAS DE LA ESTRUCTURA	65
3.1.1.	Materiales y Secciones de la estructura metálica	65
3.2. Mot	DELO DEL SISTEMA	71
3.2.1.	Definición de la configuración geométrica de la estructura	73
3.2.2.	Asignación de cargas impuestas - Carga muerta y carga viva	89
3.2.3.	Combinación para el diseño por resistencia última	93
3.2.4.	Asignación de brazos rígidos	96
3.2.5.	Asignación de diafragmas rígidos	97
3.3. Res	PUESTA SÍSMICA DE LA ESTRUCTURA. FUERZAS INDUCIDAS Y	
DESPLAZAN	/IENTOS RELATIVOS GENERADOS	104
3.3.1.	Configuración de las opciones de análisis	105
3.3.2.	Análisis de la estructura	106
3.3.3.	Resultados del análisis modal de la estructura	107
3.3.4.	Verificación de las derivas de piso	107
CAPITULO 4	l	116
4. PLANTE	EAMIENTO DE ALTERNATIVAS DE PROTECCIÓN SÍSMICA PARA	LA
ESTRUCTU	KA	116
4.1. MET 116	TODO DE PROTECCION SISMICA: MUROS DE CORTE DE HORMIGON ARMAD	0.
4.2. Mét	TODO DE PROTECCIÓN SÍSMICA: AISLADORES SÍSMICO BASE	118
4.2.1.	Cálculo del período de vibración aproximado de la estructura (T)	119
4.2.2.	Diseño del aislador elastomérico de alto amortiguamiento HDBR	120
4.2.3.	Proceso de modelado del aislador elastomérico en ETABS	135
4.2.4.	Resultados obtenidos con aisladores sísmicos	142
4.3. Mét	TODO DE PROTECCIÓN SÍSMICA: DISIPADORES PASIVOS	145
4.3.1.	Método de protección sísmica: disipadores pasivos histeréticos	145
4.3.2.	Método de Protección sísmica: disipadores pasivos viscoelásticos	163
CAPÍTULO 5	5	179
5. DISCUS	JIÓN DE ALTERNATIVAS DE PROTECCIÓN SÍSMICA PLANTEAD	٩S
Y SELECCIÓ	ON DE METODO	179
5.1. Aná	LISIS COMPARATIVO ENTRE MÉTODOS PLANTEADOS	179
5.2. Ven	ITAJAS	186
5.2.1.	Ventajas Disipadores de aislamiento sísmico basal	186
5.2.2.	Ventajas disipadores pasivos histeréticos	188
5.2.3.	Ventajas disipadores pasivos viscoelásticos	189
5.3. Res	STRICCIONES	190
5.3.1.	Restricciones en el análisis de implementación del método de	
aislamie	nto sísmico de base	190
5.3.2.	Restricciones en el análisis de implementación de disipadores pasiv	/OS
histerétio		191
5.3.3.	Restricciones en el análisis de implementación de disipadores pasiv	/0S
viscoela	SIICOS	192

5.3.4.	Restricciones en el análisis de implementación de sistemas activo 193)S.
5.3.5.	Restricciones en el análisis de implementación de muro de corte.	194
5.4. A	NÁLISIS MULTICRITERIO – MÉTODO DEL SCORING	195
CAPÍTULC	9 6	197
6. ALTER	RNATIVA DE PROTECCIÓN SÍSMICA SELECCIONADA	197
6.1. D	ETALLES TÉCNICOS	197
6.2. D	SEÑO DEL SISTEMA DISIPADOR PASIVO HISTERÉTICO	199
6.2.1.	Elementos a tensión	200
6.2.2.	Diseño de elementos a compresión	207
6.2.3.	Diseño de conexiones	212
6.2.4.	Diseño de los miembros diagonales	218
6.3. D	ETALLAMIENTO DE CONEXIONES Y ELEMENTOS	222
6.3.1.	Elementos de la conexión	222
6.3.2.	Disposición de pernos de conexión	224
6.4. C	OSTOS	226
6.4.1.	Costos de los dispositivos	227
6.4.2.	Costos del proyecto	231
6.4.3.	Costo de instalación: costos directos y gastos generales	232
6.5. IN	STALACIÓN	233
6.6. A	SPECTO AMBIENTAL	234
CONCLUS	IONES Y RECOMENDACIONES	237
CONCLUS	IONES	237
RECOMEN	IDACIONES	239
BIBLIOGR	AFÍA	241
ANEXOS .		244

XII

ABREVIATURAS

ACI	: American Concrete Institute
AISC	: American Institute of Steel Construction
ASB	: Aislador sísmico de Base
ASTM	: American Society of Test and Materials
DBD	: Diseño Basado en los Desplazamientos producidos
DBF	: Diseño Basado en las Fuerzas producidas
DPH	: Disipador Pasivo Histerético
DPV	: Disipador Pasivo Viscoelástico
ETABS	: Extended Three-Dimensional Analysis of Building Systems
FEMA	: Agencia Federal para el Manejo de Emergencias
NCh	: Norma Chilena de Construcción
NEC	: Norma Ecuatoriana de la Construcción
NEC_SE_DS	: NEC. Peligro Sísmico Diseño Sismo Resistente

SIMBOLOGÍA

Sa	: aceleración espectral como porcentaje de la gravedad
Hr	: altura del elastómero para el aislador
С	: amortiguamiento efectivo para sistema de aislación
β	: amortiguamiento para sistema de aislación
As	: área efectiva a cortante del elastómero
Pcr	: carga axial crítica
Pe	: carga de pandeo de Euler
Cs	: coeficiente de respuesta sísmica según NEC
Ymáx	: deformación angular máxima/ deformación de corte máx admisible
γs	: deformación angular a corte
Ус	: deformación angular a compresión
Уb	: deformación angular a flexión
Dd	: desplazamiento de diseño del aislador
Dy	: desplazamiento de fluencia del aislador
Dm	: desplazamiento máximo del aislador
Wd	: energía disipada por el aislador
F'c	: esfuerzo de compresión
tr	: espesor de una capa de elastómero del aislador
ts	: espesor de una lámina de acero del aislador
Фе	: factor de configuración estructural en elevación
Фр	: factor de configuración estructural en planta
S	: factor de forma
R	: factor de reducción de resistencia según NEC
ω	: frecuencia angular
Р	: fuerza axial en elementos estructurales
V	: fuerza cortante
Q	: fuerza de deformación nula para el aislador
Fy	: fuerza de fluencia del aislador
I	: Inercia
Ec	: módulo de compresión compuesto (elastómero y acero) del aislador

- : módulo de elasticidad volumétrica para el aislador k : módulo de rigidez a cortante para el elastómero del aislador Ga : módulo plástico Ζ Μ : momento flector : número de capas de elastómero del aislador n : periodo de vibración de la estructura т : relación de amplificación espectral η : rigidez efectiva Keff : rigidez horizontal del aislador Kh : rigidez inicial del aislador K1 : rigidez post-fluencia del aislador K2 : rigidez vertical del aislador Κv
- π : valor de pi (3.14159)

ÍNDICE DE FIGURAS

Figura 1.1 Vista superior del estadio Capwell ¡Error! Marcador no def	inido.
Figura 1.2 Vista arquitectónica de la Torre 4	29
Figura 2.1 Espectro sísmico elástico de aceleraciones	36
Figura 2.2 Ecuador, zonas sísmicas para propósitos de diseño y valor del facto	or de
zona Z	36
Figura 2.3 Espectro elástico de diseño	43
Figura 2.4 Irregularidad en planta por retroceso excesivo en esquinas	46
Figura 2.5 Irregularidad en elevación por piso flexible	47
Figura 2.6 Comparación entre espectros elástico e inelástico para R=8	49
Figura 2.7 Comparación entre espectros elástico e inelástico para R=4.5	51
Figura 2.8 Modelo del sistema de un grado de libertad	56
Figura 2.9 Técnica de control activo de disipación de energía	60
Figura 2.10 Técnica de control pasivo con disipadores de energía	62
Figura 2.11 Técnica de aislamiento sísmico en la base	63
Figura 3.1 Detalle de conexión sísmica viga-columna	67
Figura 3.2 Detalle de soldadura viga-columna del patín superior	67
Figura 3.3 Detalle de soldadura viga-columna del patín inferior	67
Figura 3.4 Detalle de conexión sísmica viga – columna	68
Figura 3.5 Detalle del sistema Steeldeck para losa	71
Figura 3.6 Pantalla principal ETABS	72
Figura 3.7 Selección del tipo de modelo predeterminado	73
Figura 3.8 Definición de características físicas del edificio	74
Figura 3.9 Ventana para modificar características de los ejes establecidos	74
Figura 3.10 Características de la grilla predeterminada	75
Figura 3.11 Esquema de planta y ubicación de columnas de la Torre 4	75
Figura 3.12 Esquema de pórticos de la Torre 4	76
Figura 3.13 Ajuste de alturas de entrepiso	77
Figura 3.14 Definición de materiales a usar	78
Figura 3.15 Características del acero A36	79
Figura 3.16 Características del hormigón de relleno de columnas	79
Figura 3.17 Definición de secciones de elementos a usar	80
Figura 3.18 Sección tubular hueca de acero para elementos diagonales	81
Figura 3.19 Sección compuesta para elementos verticales de la estructura	81
Figura 3.20 Perfil I para uso como elemento viga	82
Figura 3.21 Selección del tipo de apoyos para los nodos del piso base	83

Figura 3.22 Ventana de tipos de apoyo estructural, Apoyos empotrados	83
Figura 3.23 Propiedades de losa maciza para escaleras de acceso	84
Figura 3.24 Propiedades de losa maciza para escaleras 1	85
Figura 3.25 Propiedades de losa maciza para escaleras 2	85
Figura 3.26 Propiedades de losa con Steel pannel	86
Figura 3.27 Esquema de las características físicas de losas con Steel deck	87
Figura 3.28 Definición de la función de espectro de respuesta	88
Figura 3.29 Espectro de respuesta inelástico para Guayaquil	89
Figura 3.30 Definición de patrones de carga	90
Figura 3.31 Definición de casos de carga	91
Figura 3.32 Definición de casos de carga	92
Figura 3.33 Definición de combinaciones de carga	95
Figura 3.34 Definición de combinación de cargas muertas y sísmicas	95
Figura 3.35 Cuadro de asignación de brazos rígidos	96
Figura 3.36 Definición de diafragmas rígidos	97
Figura 3.37 Creación de cada diafragma y ajuste de su rigidez	97
Figura 3.38 Cuadro de asignación de diafragmas rígidos en cada nivel	98
Figura 3.39 Asignación del diafragma rígido Piso 2	99
Figura 3.40 Vista en planta y elevación nivel 4.39m	99
Figura 3.41 Vista en planta y elevación nivel 7.63m	. 100
Figura 3.42 Vista en planta y elevación nivel 10.87m	. 100
Figura 3.43 Vista en planta y elevación nivel 13.72m	. 101
Figura 3.44 Vista en planta y elevación nivel 16.60m	. 101
Figura 3.45 Vista en planta y elevación nivel 19.30m	. 102
Figura 3.46 Vista en planta y elevación nivel 23.98m	. 102
Figura 3.47 Vista en planta y elevación nivel 27.73m	. 103
Figura 3.48 Vista en planta y elevación nivel 31.50m	. 103
Figura 3.49 Cuadro de revisión de los elementos del modelo	. 106
Figura 3.50 Cuadro de opción de casos de cargas para ejecutar el análisis	. 107
Figura 3.51 Deriva Máxima por Sismo en la dirección X	.113
Figura 3.52 Deriva Máxima por Sismo en la dirección Y	.115
Figura 4.1 Aislador tipo HDRB	.119
Figura 4.2 Aislador elastomérico comercial	. 135
Figura 4.3 Definición de propiedades del aislador en ETABS	. 138
Figura 4.4 Ajuste de propiedades en la dirección U1	. 138
Figura 4.5 Ajuste de propiedades en la dirección U2	. 139
Figura 4.6 Ajuste de propiedades en la base	.140
Figura 4.7 Asignación de aisladores a los puntos base	.141
Figura 4.8 Esquema de la instalación de aisladores HDRB	.141
Figura 4.9 Cuadro conceptual de disipación de energía y selección de disipador	
pasivo para análisis	. 147
Figura 4.10 Ventana para definición del perfil utilizado para riostras	. 149

ÍNDICE DE TABLAS

Tabla I Valores de factor Z en función de la zona sísmica adoptada	
Tabla II Clasificación de los perfiles de suelo	
Tabla III Tipo de suelo y factores de sitio Fa	
Tabla IV Tipo de suelo y factores de sitio Fd	
Tabla V Tipo de suelo y factores de sitio Fs	
Tabla VI Valores de Sa para su periodo T correspondiente	
Tabla VII Factor de importancia según tipo de uso y destino de la estruc	ctura 47
Tabla VIII Valores de Cs para su periodo T correspondiente con R=8	
Tabla IX Valores de Cs para su periodo T correspondiente con R=4.5	
Tabla X Características del suelo en zona de implantación – Perforació	n #05 52
Tabla XI Características del suelo en zona de implantación – Perforació	n #07 53
Tabla XII Características de los Materiales de Construcción para Torre	466
Tabla XIII Proceso de Soldadura en elementos de acero estructural par	ra la Torre 4
·	66
Tabla XIV Dimensiones y materiales de vigas metálicas del sistema	69
Tabla XV Dimensiones y materiales de columnas metálicas del sistema	69
Tabla XVI Cargas muertas consideradas para el análisis	90
Tabla XVII Valores de deriva de piso máximos, expresados como fracci	ón de la
altura de piso	
Tabla XVIII Coeficientes de irregularidad en planta.	111
Tabla XIX Coeficientes de irregularidad en elevación	112
Tabla XX Valor de derivas para cada planta, producidas por el sismo er	1 la dirección
Х	114
Tabla XXI Valor de derivas para cada planta, producidas por el sismo el	n la dirección
Υ	115
Tabla XXII Niveles de desempeño estructural y dañosiError! I	Marcador no
definido.	
Tabla XXIII Parámetros para el cálculo del periodo de la estructura	
Tabla XXIV Información de base correspondiente a la estructura analiza	ada 122
Tabla XXV Datos particulares para el diseño de aisladores	
Tabla XXVI Comparación entre norma chilena y ecuatoriana para tipo d	e suelo 123
Tabla XXVII Determinación de coeficiente de desplazamiento	
Tabla XXVIII Determinación de factor Z	
Tabla XXIX Determinación de factor MM	124
Tabla XXX Determinación de factores Bd y Bm	
Tabla XXXI Cuadro de resumen para aislador tipo HDRB	134
Tabla XXXII Desplazamientos de la estructura debido a sismo en X	142
Tabla XXXIII Desplazamientos de la estructura debido a sismo en Y	142
Tabla XXXIV Periodos y participación modal caso HDRB	143
Tabla XXXV Análisis de derivas para cada piso de la estructura	144

Tabla XXXVI Valores de desplazamientos con riostras concéntricas tipo V inver	tida
- Sismo en la dirección X	152
Tabla XXXVII Valores de desplazamientos con riostras concéntricas tipo V inve	rtida
– Sismo en la dirección Y	152
Tabla XXXVIII Valores de Fuerza axial, fuerza cortante, torsión y momento en la	Э
estructura original y estructura con disipadores histeréticos - Sismo en la direcc	ión
Χ	156
Tabla XXXIX Solicitaciones de columna C3 piso – Sismo en la dirección X	157
Tabla XL Datos de columna C3 piso 6	158
Tabla XLI Cálculo de resistencias nominales de columna C3 piso 6	161
Tabla XLII Datos de columna C7-2 piso 1	162
Tabla XLIII Cálculo de resistencias nominales de columna C7-2 piso 1	162
Tabla XLIV Coordenadas de centro de masa y centro de rigidez de la estructura	a con
elementos disipadores pasivos viscoelásticos.	171
Tabla XLV Valores de desplazamientos con disipadores pasivos viscoso – Sisn	10 en
la dirección X	171
Tabla XLVI Valores de desplazamientos con disipadores pasivos viscoso – Sisi	no
en la dirección Y	172
Tabla XLVII Valores de Fuerza axial, fuerza cortante, torsión y momento en la	
estructura original y estructura con disipadores viscoelásticos – Sismo en la	
dirección X	176
Tabla XLVIII Comprobación de capacidad portante de columnas de la estructur	a
con disipadores viscoelasticos	1//
Tabla XLIX Comparación de porcentajes de reducción de desplazamientos con	
metodos planteados – Sismo en X	181
Tabla L Comparación de derivas maximas de entrepiso según metodos plantea	
- Sismo en X	182
Tabla Li Comparación de porcentajes de reducción de desplazamientos con	400
metodos planteados – Sismo en Y	183
Tabla LI Comparación de denvas maximas de entrepiso según metodos plante	104
- SISITIO EIT 1	104
alternatives propuestos	240
Table I IV Table de selicitación de elementos para el diseño	249
Table LV Propiedados del acoro A36 para diseño de conexiones y elemento	200
Tabla LV Propiedades del acero Aso para diseño de conexiones y elemento	202
Tabla LVI Valores de factor de longitud ofoctivo K	203
Table LVII Valores de Parámetro de espeltez máxima $3n$ para elementos	210
compactos	212
Tabla I IX Valores asumidos para coneviones de contacto	212
Tabla I X Revisión de estados límites para pernos de conexiones de contacto	215
Tabla I XI Valores asumidos para disposición de conexión de contacto.	215
Tabla I XII Revisión de estados límites para conexión de contacto	216
Tabla I XIII Valores de tracción mínima en pernos de ajuste <i>Th</i>	217
Tabla LXIV Revisión de estados límites para pernos de conexiones de	
deslizamiento crítico	218
Tabla LXV Valores requeridos para selección de perfil	219
Tabla LXVI Propiedades geométricas del perfil seleccionado	219

Tabla LXVII Parámetros de esbeltez de alas y almas de la sección	
Tabla LXVIII Análisis de la carga crítica a compresión del elemento	221
Tabla LXIX Valores de distancia mínima al borde de pernos de conexión .	
Tabla LXX Determinación de pesos para disipadores histeréticos	
Tabla LXXI Resumen de Costos de Construcción de la "Torre 4"	231
Tabla LXXII Impactos Ambientales de actividades para construcción de el	ementos
disipadores	235

CAPÍTULO 1

1.GENERALIDADES

1.1. Introducción.

Durante su vida útil, las estructuras son sometidas a diversas solicitaciones de servicio, aquellas provenientes de las cargas propias del uso del edificio y otras de fenómenos naturales. Dentro de este último tipo se encuentran las cargas provenientes por sismos, en donde la energía liberada en la fuente se propaga a través del suelo en forma de ondas.

Esta energía se transmite a las estructuras y se manifiesta como movimiento, aceleración y deformación de los componentes del sistema estructural y no estructural, obteniendo como resultado fisuras o daños graves por la liberación de dicha energía.

El 16 de abril de 2016, El Ecuador experimentó un evento que será tomado como precedente en la historia del crecimiento y desarrollo de la nación, un terremoto de 7.8 grados en la escala de Richter, el cual tuvo su epicentro entre las parroquias Pedernales y Cojimíes, en la provincia de Manabí colindante con la provincia de Esmeraldas, esto ocasionó el colapso o daño de muchas estructuras en varios

sectores, lo que conllevó a graves pérdidas económicas y un impacto social en la región.

Este tipo de eventos naturales han dejado en manifiesto la alta vulnerabilidad sísmica de las estructuras, por esta razón resulta necesario promover en Ecuador el uso de tecnologías, probadas a nivel nacional e internacional y reconocidas por la comunidad profesional, orientadas a mejorar la respuesta sísmica de las estructuras, más allá de los requisitos mínimos de la normativa nacional vigente.

El uso de sistemas de protección sísmica en las estructuras de Ecuador es un tema que se ha ido desarrollando progresivamente e implica una gran inversión económica, es por ello que muchas edificaciones carecen de este tipo de sistemas.

En el presente trabajo se pretende plantear tres tipos de soluciones que proporcionen a la estructura una protección sísmica mediante el estudio de los métodos desarrollados como lo son los muros de corte, aisladores sísmicos de base, disipadores pasivos de energía, en una estructura metálica con el objetivo de determinar su desempeño sísmico ante un evento natural como el acaecido en el mes de abril del año en curso.

La estructura a analizar corresponde a la Torre Cuatro del Estadio George Capwell, Torre esquinera ubicada en las calles General Gómez y Pío Montúfar, actualmente en proceso de construcción. Es una estructura de 32 metros de alto que funcionará como accesos para las personas que se dirigen a los graderíos y que contendrán suites para la observación de los eventos deportivos. Cómo afectará el tipo de suelo sobre el cual está apoyada la edificación en correlación con las tres propuestas que se plantearán como sistema sismorresistente, la interacción entre los elementos estructurales y la propuesta final de protección sísmica establecida mediante el análisis de su efectividad, costos, mantenimiento y vida útil, es lo que se pretende detallar en este proyecto.

1.2. Antecedentes.

El proyecto de remodelación del estadio George Capwell presentado en el año 2015, incluye dentro de su propósito, la ampliación de las edificaciones y con ello la construcción de cuatro torres esquineras, las cuales servirán como enlaces para ascender y dirigirse hacia los edificios de graderías mediante escaleras o un sistema de ascensores.

Para la torre cuatro específicamente, se definió una cimentación con pilotes de hormigón armado de 50 x 50 centímetros y de 30.00 metros de longitud por las características de suelos que se encontraron luego de la realización de ensayos, lo que indicó la estratigrafía del suelo y se puede destacar el contenido de arcilla verdosa junto con arena arcillosa de coloración gris verdosa hasta los 28.75 metros de profundidad, lo que establece la necesidad de la cimentación profunda con pilotes que penetren un metro el estrato resistente.

Adicionalmente, se definió una cimentación superficial compuesta por cabezales en los extremos superiores de los pilotes unidos entre sí mediante vigas de cimentación

de hormigón armado con una resistencia a la compresión de 350 kg/cm2, lo que evita que se produzcan asentamientos diferenciales en toda la estructura.

La estructura de la Torre cuatro, de 32 metros de altura, está formada por perfiles metálicos de acero A36 ensamblados mediante soldadura, los perfiles metálicos son tubos rectangulares huecos que posteriormente serán rellenados de hormigón cuya resistencia a la compresión es 280 kg/cm2. Cuenta también con una losa de hormigón formada por un steel panel de 12 centímetros de altura en total.

Cabe indicar, que las solicitaciones sísmicas son en función del tamaño del edificio, su configuración, materiales y sus características elasto-geométricas, cimentación y tipo del suelo circundante, lo que permite determinar las características dinámicas de la estructura y su comportamiento frente al dinamismo presentado en un temblor, lo cual dependerá también de la distancia al epicentro, profundidad focal y magnitud del sismo.

Frente a estas condiciones, se presentan las técnicas de control de respuesta desarrolladas con el propósito de reducir y controlar el daño estructural asociado principalmente a sismos.

Estas técnicas complementan las técnicas tradicionales de diseño al introducir elementos estructurales adicionales que deben disipar la mayor parte de la energía de vibración introducida por los sismos. Estos elementos adicionales se colocan estratégicamente en la estructura principal para que se dé el mayor aprovechamiento de su capacidad de disipación de energía y para que se localice el daño estructural.

De esta manera, después de un evento sísmico fuerte, estos elementos fácilmente se reemplazan sin poner en riesgo la estabilidad y la funcionalidad de la edificación.

1.3. Justificación

El Ecuador tiene una larga historia de actividad sísmica, como muestra de ello, el terremoto ocurrido el 16 de abril del presente año, que provocó el daño o destrucción de un gran número de edificios en el centro de la ciudad de Guayaquil, las características del suelo encontradas en esta zona, presentan un suelo blando en gran parte de su composición; como bien se conoce, las características dinámicas de excitación varían en función a esto. En suelos blandos las oscilaciones son de menor frecuencia, esto es, su periodo es relativamente más largo, lo que constituye un mayor daño en la estructura.

La Torre cuatro del Estadio George Capwell considerada para este análisis, como ya se indicó, funcionará como accesos para las personas que se dirigen a los graderíos y que contendrán suites para la observación de los eventos deportivos, lo que implica la necesidad de un alto desempeño sísmico frente a un evento como este, ya que servirá como ruta de evacuación y alojará a los asistentes.

Al realizar el análisis de la respuesta del sistema frente al sismo de diseño, se obtienen los desplazamientos, esfuerzos producidos, velocidades o aceleraciones y

a partir de esto, deducir el efecto que se producirá en la estructura, con ello se logra diseñar los métodos de protección sísmica para el sistema de manera que garantice su favorable desempeño.

1.4. Ubicación

El Estadio George Capwell presenta las siguientes coordenadas geográficas:

Latitud: 2°12'24.53"S

Longitud: 79°53'37.97"O

Rodeado por las calles Pío Montúfar, Avenida Quito, General José A. Gómez y General José San Martín, en el centro sur de Guayaquil, en la provincia del Guayas, Ecuador.

Figura 1.1 Vista superior del estadio Capwell Fuente: Google Maps 2016.

De manera particular, la Torre esquinera cuatro, está ubicada en las calles General Gómez y Pío Montúfar.

Figura 1.2 Vista arquitectónica de la Torre 4 **Fuente:** Departamento arquitectónico de la obra de remodelación.

1.5. Objetivos: general y específicos

1.5.1. Objetivo general

• Estudiar y analizar el desempeño estructural de la Torre metálica 4 del Estadio Capwell frente a los esfuerzos generados por el sismo de diseño y plantear alternativas de técnicas de control de respuesta sísmica en la edificación con el propósito de reducir y controlar el daño estructural producidos por estos eventos.

1.5.2. Objetivos específicos

 Modelar y analizar el comportamiento de la estructura metálica frente al sismo de diseño con el Software ETABS v15.2. Para su verificación del desempeño sísmico en cumplimiento de las disposiciones dela NEC-SE-DS.

- Revisar los criterios de análisis y diseño de métodos para protección sísmica de estructuras de manera que se planteen tres alternativas que logren reducir sustancialmente la energía que debe ser disipada por la estructura disminuyendo los daños en los componentes estructurales y no estructurales del sistema.
- Seleccionar una técnica de control de respuesta sísmica para implementar en la edificación en cuestión relacionada con factores como efectividad, relación costobeneficio, vida útil y procesos de mantenimiento del sistema.

CAPÍTULO 2

2. INFORMACIÓN BASE

2.1. Información disponible.

2.1.1. Códigos y referencias bibliográficas específicas de diseño

El análisis y diseño de los elementos de la estructura de la Torre 4, tiene como principal documento de apoyo las últimas ediciones de los siguientes códigos y documentos técnicos:

- Norma Ecuatoriana de la Construcción, NEC-2015.
- ACI Standard 318-14, Building Code Requirements for Structural Concrete and Commentary.
- ANSI/AISC 360-10 Specification for Structural Steel Buildings.
- ANSI/AISC 341-10 Seismic Provisions for Structural Steel Buildings.
- ASCE 7-10, A Minimum Design Loads for Buildings and Other Structures.
- AWS D1.1/D1.1M:2010 Structural Welding Code.

• AWS D1.8 Seismic Suplement. American Welding Society.

2.1.2. Parámetros de diseño de la estructura

El diseño sismo-resistente de la estructura se realiza para disponer de una rigidez adecuada y limitar las deformaciones, a través de las siguientes fases:

• Hipótesis Generales, Estados de Carga y Métodos de Diseño a utilizar.

• Prediseño estructural.

 Análisis estructural y determinación de las fuerzas internas actuantes tipo Cargas axiales, Momentos flectores, Cortantes y Torsores mediante el uso del software ETABS V.15

• Evaluación de las deformaciones horizontales y verticales de la estructura

Las consideraciones de diseño estructural más importantes son:

- Factor de Respuesta de Reducción Sísmica R
- Pórticos Intermedios Resistentes a Momento.
- Conexiones Sísmicas.

Placa Base-Columna

Viga-Columna.

Uniones de Tramos de Columnas.

- Secciones de Vigas y Columnas con relaciones ancho-espesor compactas.
- Cargas Vivas: 480 kg/m2.
- Requisitos de deriva inelástica inferiores al 2%. (NEC-15 DS)

• Cortantes basales dinámicos deben ser superiores al 0,85 (estructura irregular) del cortante basal estático calculado.

Este edificio debido a su función, a la disposición arquitectónica de sus columnas (doble altura en su parte baja) y a las irregularidades tanto en planta como elevación presente genera valores de rotaciones y desplazamientos superiores a los edificios tradicionales de similar tamaño y área, por lo cual se vuelve imperativo cumplir con los requisitos mínimos estipulados en el código.

Una vez efectuado los análisis y los modelos correspondientes, se puede concluir que el peso de la estructura de acero de este edificio adecuadamente diseñada está en el orden de los 85kg/m2. Valores inferiores indicarían que no se están cumpliendo con requisitos mínimos de resistencia, deriva de piso (deformaciones laterales), cortantes basales requeridos y podrían comprometer la estabilidad de la estructura.

2.2. Condición sísmica nacional y norma ecuatoriana de la construcción NEC SE-DS

El Ecuador es una región de alto impacto sísmico al encontrarse en el cinturón de fuego del Pacífico, zona donde convergen las placas Nazca y Continental mediante el fenómeno de subducción y consecuentemente deriva en la liberación de energía a través de los denominados terremotos.

Ante los eventos acontecidos en el país, es imprescindible establecer los niveles de riesgo sísmico a los que una determinada localidad estará sometida con el objetivo de reducir los daños y evitar la pérdida de vidas humanas.

El riesgo potencial en una localidad depende de la sismicidad regional, de la manera en cómo se atenúan los desplazamientos y las características del suelo del sitio. Desde el punto de vista de ingeniería sismo-resistente, el riesgo existente se podrá expresar a través de parámetros de diseño esperados de suceder con un cierto nivel de probabilidad de excedencia (Palacio Gonzales, Blum Gutiérrez, Maruri Díaz, Ayón, & Rodríguez, 1988).

En Guayaquil, muchas estructuras se vieron afectadas debido al sismo acontecido el pasado 16 de abril del año en curso, problemas en el sistema no estructural como grietas en las paredes de mampostería de los edificios son los que se observan en su mayoría al recorrer varias zonas de la ciudad y en particular donde existe falta de mantenimiento o antigüedad en las edificaciones. Mientras que pocos edificios se vieron afectados estructuralmente, a tal punto de tener que derrumbarlos por un alto deterioro en columnas y vigas. Cabe destacar que, según el IGM, en Guayaquil se sintió la tercera parte del sismo acaecido en la provincia de Manabí.

2.2.1. Espectro elástico de diseño

En el siguiente numeral se va a proceder a determinar los parámetros necesarios para poder calcular y graficar el espectro de diseño para un sismo que posee un tiempo de retorno de 475 años, lo que representa un 10% de probabilidad de excedencia en 50 años. Este procedimiento está estipulado en la norma ecuatoriana de la construcción NEC 2015, la cual a su vez se apoya de la norma americana ASCE 7-10.

En cuanto a las componentes horizontales se puede destacar que el espectro de respuesta elástico de aceleraciones Sa, es expresado como fragmentos de la aceleración de la gravedad para el nivel del sismo de diseño, además debe ser consistente con el factor de zona sísmica Z, el tipo de suelo en el que se apoyará la estructura y el valor de los coeficientes de amplificación de suelo. En la figura 2.1 se puede observar un esquema del sismo de diseño formado en el eje de sus ordenadas por las fracciones de la aceleración gravedad, mientras que en el eje de sus abscisas se registrarán los periodos que servirán para el análisis de la estructura.

Figura 2.2 Ecuador, zonas sísmicas para propósitos de diseño y valor del factor de zona Z Fuente: Obtenido de NEC_SE_DS, 2015

					· · · ·	
Zona sísmica	I	Π	III	IV	V	VI
Valor factor Z	0.15	0.25	0.30	0.35	0.40	≥ 0.50
Caracterización del peligro sísmico	Intermedia	Alta	Alta	Alta	Alta	Muy alta

Tabla I Valores de factor Z en función de la zona sísmica adoptada

Fuente: Obten	do de NEC	SE	_DS,	201	5
---------------	-----------	----	------	-----	---

Como primer punto se definirá el valor de Z, el cual representa la aceleración máxima en roca esperada para el sismo de diseño, expresada como fracción de la aceleración de la gravedad. En la figura 2.2 se puede observar que zonas como Guayaquil están pintadas de color naranja, lo que corresponde un valor de Z de 0.4g, es decir, se habla de una zona sísmica V cuya caracterización del peligro sísmico es alta según la Tabla II.

Tipo de perfil	Descripción	Definición
A	Perfil de roca competente	V _s ≥ 1500 m/s
В	Perfil de roca de rigidez media	1500 m/s >V₅ ≥ 760 m/s
С	Perfiles de suelos muy densos o roca blanda, que cumplan con el criterio de velocidad de la onda de cortante, o	760 m/s > V _s ≥ 360 m/s
	Perfiles de suelos muy densos o roca blanda, que cumplan con cualquiera de los dos criterios	N ≥ 50.0 S _u ≥ 100 KPa
D	Perfiles de suelos rígidos que cumplan con el criterio de velocidad de la onda de cortante, o	360 m/s > V _s ≥ 180 m/s
	Perfiles de suelos rígidos que cumplan cualquiera de las dos condiciones	50 > N ≥ 15.0 100 kPa > S _u ≥ 50 kPa
E	Perfil que cumpla el criterio de velocidad de la onda de cortante, o	Vs < 180 m/s
	Perfil que contiene un espesor total H mayor de 3 m de arcillas blandas	IP > 20 w ≥ 40% S _u < 50 kPa
F	Los perfiles de suelo tipo F requieren una evaluación realizada explícitamente en el sitio por un ingeniero geotecnista. Se contemplan las siguientes subclases:	
	F1—Suelos susceptibles a la falla o colapso causado por la excitación sísmica, tales como; suelos licuables, arcillas sensitivas, suelos dispersivos o débilmente cementados, etc.	
	F2—Turba y arcillas orgánicas y muy orgánicas (H > 3m para turba o arcillas orgánicas y muy orgánicas).	
	F3—Arcillas de muy alta plasticidad (H > 7.5 m con índice de Plasticidad IP > 75)	
	F4—Perfiles de gran espesor de arcillas de rigidez mediana a blanda (H > 30m)	
	F5—Suelos con contrastes de impedancia α ocurriendo dentro de los primeros 30 m superiores del perfil de subsuelo, incluyendo contactos entre suelos blandos y roca, con variaciones bruscas de velocidades de ondas de corte.	
	F6—Rellenos colocados sin control ingenieril.	

Tabla II Clasificación de los perfiles de suelo

Fuente: Obtenido de NEC_SE_DS, 2015
Según el estudio de suelos realizado en el sector, se puede observar en la tabla III que para una velocidad de onda mayor a 180 m/s y menor a 360 m/s, el tipo de suelo que caracteriza a la zona es un perfil tipo D. Con este tipo de perfil se trabajará para la determinación de los parámetros para realizar el espectro. Se debe destacar que el tipo de estructura a utilizar consiste en Pórticos intermedios especiales sismo-resistentes.

Con el tipo de suelo D y con la caracterización de zona sísmica V se procede a determinar los parámetros Fa, Fd y Fs.

	Zona sísmica y factor Z						
Tipo de perfil del subsuelo	I	Ш	Ш	IV	V	VI	
	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.9	0.9	0.9	0.9	0.9	0.9	
В	1	1	1	1	1	1	
С	1.4	1.3	1.25	1.23	1.2	1.18	
D	1.6	1.4	1.3	1.25	(1.2)	1.12	
E	1.8	1.4	1.25	1.1	1.0	0.85	
F	Véase Tal	bla 2 : Clas	ificación de <u>10.</u>	los perfiles 5.4	de suelo y	la sección	

Tabla III Tipo de suelo y factores de sitio Fa

Fuente: Obtenido de NEC_SE_DS, 2015

	Zona sísmica y factor Z						
Tipo de perfil del subsuelo	1	Ш	Ш	IV	V	VI	
	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.9	0.9	0.9	0.9	0.9	0.9	
В	1	1	1	1	1	1	
С	1.36	1.28	1.19	1.15	1.11	1.06	
D	1.62	1.45	1.36	1.28	1.19	1.11	
E	2.1	1.75	1.7	1.65	1.6	1.5	
F	Véase <u>T</u>	abla 2 : Cla	asificación o	de los perfil	es de suelo	y 10.6.4	

Tabla IV Tipo de suelo y factores de sitio Fd

Fuente: Obtenido de NEC_SE_DS, 2015

	Zona sísmica y factor Z						
Tipo de perfil del subsuelo	I	Ш	III	IV	V	VI	
	0.15	0.25	0.30	0.35	0.40	≥0.5	
A	0.75	0.75	0.75	0.75	0.75	0.75	
В	0.75	0.75	0.75	0.75	0.75	0.75	
С	0.85	0.94	1.02	1.06	1.11	1.23	
D	1.02	1.06	1.11	1.19	1.28	1.40	
E	1.5	1.6	1.7	1.8	1.9	2	
F	Véase T	abla 2 : Cla	asificación o	de los perfil	es de suelo	y 10.6.4	

Tabla V Tipo de suelo y factores de sitio Fs

Fuente: Obtenido de NEC_SE_DS, 2015

Los valores obtenidos son:

Coeficientes de amplificación dinámica del perfil Fa: 1.20

Coeficientes de amplificación dinámica del perfil Fd: 1.19

Coeficientes de amplificación dinámica del perfil Fs: 1.28

La NEC además propone un valor de relación de amplificación espectral (η) que es característico para ciertas regiones del Ecuador, es decir, se refiere a la fracción Sa/Z para terreno en donde solo exista roca, el cual permitirá tener una mejor estimación de las componentes horizontales del espectro de diseño. Según la NEC 2015 para provincias de la Costa (excepto Esmeraldas) el valor de η es igual a 1.80 y es el que se usará para los cálculos respectivos del espectro de diseño.

El siguiente paso corresponde a la determinación de los periodos límites de vibración To y Tc, para lo cual es necesario emplear las siguientes ecuaciones:

Ec. 1:
$$To = 0.10 \text{ Fs} * \frac{Fd}{Fa}$$

$$Ec. 2: \quad Tc = 0.55 \text{ Fs } * \frac{Fd}{Fa}$$

Los valores de Fs, Fd y Fa ya son conocidos, por lo tanto, los resultados obtenidos son:

To = 0,127 seg. Mientras que Tc = 0,698 seg.

Como se pudo visualizar en el gráfico 2.1, el espectro de diseño está formado por 3 regiones: una recta ascendente, una recta horizontal para un valor constante de Sa y por último una curva descendente, la cual conlleva una relación inversamente proporcional entre el periodo T y el valor de Sa.

Para estimar estos valores es necesario definir algebraicamente las regiones y sus respectivas funciones.

Región 1.- T ≤ To

Ec. 3:
$$Sa = Z * Fa [1 + (\eta - 1) * \frac{T}{To}]$$

Región 2.- To < T \leq Tc

Ec. 4:
$$Sa = \eta * Z * Fa$$

Región 3.- T > Tc

Ec.5:
$$Sa = \eta * Z * Fa * (\frac{Tc}{T})^r$$

Donde r es un factor que depende de la ubicación geográfica del proyecto.

r=1 para todos los tipos de suelo, exceptuando el suelo tipo E.

r=1.5 para suelo tipo E.

REGION

Finalmente se realizan los cálculos respectivos y se tabulan los resultados.

1:		_			_		
ESP ELÁ	ECTRO STICO		ESPE ELÁS	CTRO STICO		ESPECTRO ELÁSTIC	
т	Sa		т	Sa		Т	Sa
0	0,48		0,13	0,864		0,7	0,862
0,01	0,5102521		0,14	0,864		0,8	0,754
0,02	0,5405042		0,15	0,864		0,85	0,710
0,03	0,5707563		0,2	0,864		0,9	0,670
0,04	0,6010084		0,25	0,864		1	0,603
0,05	0,6312605		0,3	0,864		1,5	0,402
0,06	0,66151261		0,35	0,864		2	0,302
0,07	0,69176471		0,4	0,864		2,5	0,241
0,08	0,72201681		0,45	0,864		3	0,201
0,09	0,75226891		0,5	0,864		3,5	0,172
0,1	0,78252101		0,55	0,864			
0,11	0,81277311		0,6	0,864			
0,12	0,84302521		0,65	0,864			
0,13	0,864		0,698	0,864			

Tabla VI Valores de Sa para su periodo T correspondiente. $T \le T0$ REGION 2: $T0 < T \le Tc$ REGION 3:T > Tc

Fuente: Autores.

Por lo que el espectro elástico queda definido de la siguiente manera:

Figura 2.3 Espectro elástico de diseño Fuente: Autores

2.2.2. Espectro inelástico de diseño

Al realizar el modelamiento de una estructura es necesario someter tal esquema a un espectro del sismo de diseño con el objetivo de determinar si los elementos estructurales estimados entran en el rango de ductilidad necesaria para soportar las fuerzas sísmicas e impedir su colapso.

El espectro elástico posee la característica de que proporcionará una gran resistencia a los elementos estructurales por lo que sus dimensiones serán lo suficientemente grandes para soportar las mayores deformaciones y evitar su desmoronamiento. Por ello surgió la idea de un espectro inelástico, el cual permitirá la deformación de los elementos estructurales a tal punto de que no sufran daños graves, es decir, una mayor ductilidad con la optimización de que dichos elementos tendrán menores dimensiones que las que resulten de un análisis con un espectro elástico. Esto desde el punto de vista económico para el proyecto es muy conveniente, ya que implica menos gasto en material, mano de obra, transporte, etc. Consecuentemente el tiempo de ejecución de la obra es menor.

Para construir el espectro inelástico de diseño, se dividen las ordenadas del espectro elástico para un coeficiente de modificación de respuesta "R" según ASCE 7-10 ó coeficiente de reducción de resistencia sísmica según NEC 2015. Adicionalmente se deben multiplicar las ordenadas por un factor de importancia, el cual varía dependiendo del uso posterior del edificio. Por último, se debe dividir tal resultado para dos factores de configuración estructural Øp y Øe, en planta y en elevación respectivamente.

Estos factores se encuentran en las tablas 13 y 14 de la sección 5.2.3 de la NEC_SE_DS 2015.

Ec. 6:
$$Cs = Sa * \frac{I}{R * \emptyset p * \emptyset e}$$

El factor de reducción de resistencia R depende de algunas variables como: el tipo de estructura, tipo de suelo, periodo de vibración considerado, factores de ductilidad, factores de sobre-resistencia, redundancia y amortiguamiento de una estructura en condiciones límite, dicho factor se lo ha simplificado a un parámetro

constante dependiente únicamente de la tipología estructural. Por lo tanto, para un sistema de pórticos especiales sismo resistentes de acero se toma R igual a 8, según la norma ecuatoriana de la construcción.

Sin embargo, para este tipo de pórticos la norma ASCE 7-10 estipula un valor más cercano a la realidad, el cual no es muy conservador porque implica la acogida de gran parte de la magnitud de la carga por sismo para el análisis estructural, este coeficiente es igual a 4.5 según la tabla 12.2-1 del código mencionado.

Ambos valores difieren notablemente para ser un mismo sistema de trabajo, esto se debe a que la NEC no considera la totalidad de criterios para los distintos tipos de sistemas, caso contrario, los generaliza por poseer "características similares". Hecho que no idealiza la norma norteamericana pues ellos poseen un detalle más minucioso y específico para cada sistema que hayan estudiado y analizado, por experiencia en trabajos previos o por estudios de laboratorio.

Al reducir en gran magnitud el espectro elástico que se considere para el diseño de una estructura metálica en el Ecuador, no se tomarán en cuenta errores por la soldadura de los flejes para la formación de los perfiles metálicos, o aquellos que resulten del ensamblaje e instalación en obra, ya que en Ecuador no se cumple a cabalidad un control de calidad para estructuras metálicas en todas las obras existentes. Esto afectará en cierto grado a la resistencia de los elementos ante las fuerzas sísmicas, por lo que se recomienda tomar un valor de R que considere estos defectos mencionados y que la estructura sea dúctil sin llegar al colapso. En el presente trabajo se realizarán dos análisis inelásticos de la estructura, tomando en cuenta un factor de reducción R=4.5 y R=8, los cuales se compararán posteriormente con el objetivo de observar la efectividad de los mismos en cuanto a la resistencia alcanzada de los elementos metálicos de la torre 4 del Estadio Capwell.

Por último se deben considerar los factores de irregularidad según la NEC_SE_DS 2015, en donde en la tabla 13 se puede observar que la configuración de una estructura se considera irregular cuando presenta entrantes excesivos en sus esquinas. Esto se comprueba cuando ambas dimensiones de las entrantes son mayores que el 15% de la dimensión de la planta de la estructura en la dirección del entrante.

Mientras que en la tabla 14 del mismo código, se puede percatar que para la Torre 4 del Estadio Capwell, existe una irregularidad en elevación denominada Piso Flexible, puesto que la rigidez lateral de un piso es menor que el 70% de la rigidez lateral del piso superior.

Figura 2.4 Irregularidad en planta por retroceso excesivo en esquinas Fuente: Obtenido de NEC_SE_DS, 2015

Figura 2.5 Irregularidad en elevación por piso flexible Fuente: Obtenido de NEC_SE_DS, 2015

2.2.3 Coeficiente de Importancia I: Estructuras de ocupación especial y

esencial.

Categoría	Tipo de uso, destino e importancia	Coeficiente I
Edificaciones esenciales	Hospitales, clínicas, Centros de salud o de emergencia sanitaria. Instalaciones militares, de policía, bomberos, defensa civil. Garajes o estacionamientos para vehículos y aviones que atienden emergencias. Torres de control aéreo. Estructuras de centros de telecomunicaciones u otros centros de atención de emergencias. Estructuras que albergan equipos de generación y distribución eléctrica. Tanques u otras estructuras utilizadas para depósito de agua u otras substancias anti-incendio. Estructuras que albergan depósitos tóxicos, explosivos, químicos u otras substancias peligrosas.	1.5
Estructuras de ocupación especial	Museos, iglesias, escuelas y centros de educación o deportivos que albergan más de trescientas personas. Todas las estructuras que albergan más de cinco mil personas. Edificios públicos que requieren operar continuamente	1.3
Otras estructuras	Todas las estructuras de edificación y otras que no clasifican dentro de las categorías anteriores	1.0

Tabla VII Factor de importancia según tipo de uso y destino de la estructura

Fuente: Obtenido de NEC_SE_DS, 2015

Como se puede observar en la tabla VII, para centros deportivos que alberguen más de 300 personas, e incluso edificaciones que alberguen más de cinco mil personas

se consideran como estructuras de ocupación especial, por lo tanto, el factor de importancia que se le imparte es de 1.3.

En resumen, se tienen los siguientes factores:

Coeficient	te de red	ucción de resp	uesta estructural	4.5 - 8	
Categoría:			Estructura de ocu	ipación especial	
Coeficiente de importancia (I):			1.3		
Tipo de Irregularidad en planta:			Retrocesos excesivos en las esquinas		
Coeficiente	de	configuración	0.9		
estructural en pla	anta (Φp)):			
Tipo de Irregular	idad en e	elevación:	Piso flexible		
Coeficiente	de	configuración	0.9		
estructural en ele	evación (Фе):			

Por lo tanto, aplicando la ecuación 6 para los valores de las ordenadas calculadas en el espectro elástico y para un R = 8 se tiene que:

ESPECTRO INELÁSTICO						
Т	Sa	Cs				
0	0,4800	0,0963				
0,02	0,5405	0,1084				
0,04	0,6010	0,1206				
0,06	0,6615	0,1327				
0,1	0,7825	0,1570				
0,12	0,8430	0,1691				

Tabla VIII Valores de Cs para su periodo T correspondiente con R=8

ESPECTRO INELÁSTICO					
Т	Sa	Cs			
0,1269	0,8640	0,1733			
0,13	0,8640	0,1733			
0,2	0,8640	0,1733			
0,4	0,8640	0,1733			
0,6	0,8640	0,1733			
0,6981	0,8640	0,1733			
0,7	0,8617	0,1729			
1	0,6032	0,1210			
2	0,3016	0,0605			
3	0,2011	0,0403			
3,5	0,1723	0,0346			

Fuente:	Autores
---------	---------

Figura 2.6 Comparación entre espectros elástico e inelástico para R=8 Fuente: Autores

Mientras que aplicando la ecuación 6 para los valores de las ordenadas calculadas en el espectro elástico y para un R = 4.5 se tiene que:

ESPECTRO INELASTICO						
Т	Sa	Cs				
0	0,4800	0,1712				
0,02	0,5405	0,1928				
0,04	0,6010	0,2144				
0,06	0,6615	0,2359				
0,1	0,7825	0,2791				
0,12	0,8430	0,3007				
0,1269	0,8640	0,3081				
0,13	0,8640	0,3081				
0,2	0,8640	0,3081				
0,4	0,8640	0,3081				
0,6	0,8640	0,3081				
0,6981	0,8640	0,3081				
0,7	0,8617	0,3073				
1	0,6032	0,2151				
2	0,3016	0,1076				
3	0,2011	0,0717				
3,5	0,1723	0,0615				

Tabla IX Valores de Cs para su periodo T correspondiente con R=4.5

Fuente: Autores

Figura 2.7 Comparación entre espectros elástico e inelástico para R=4.5 Fuente: Autores

2.3. Estudio de suelo y cimentación de la Torre 4

2.3.1. Estudio de suelo en zona de implantación

Según el estudio de suelo elaborado por la Consultora LAMSCO en diciembre del 2014, donde se realizaron 18 perforaciones cuyas profundidades variaban entre 23.30 y 30.80 metros, de manera específica las perforaciones 05 y 07 ejecutadas en la intersección de las calles General Gómez y Pío Montúfar, lugar de implantación de la estructura en cuestión, se detalla lo siguiente:

Perforación #05							
Profundidad	Tipo de Suelo	Coloración	Porcentaje de Humedad	Pasante del tamiz #200	Número de Golpes Ensayo SPT		
0.00 1.30	Grava arenosa arcillosa	Gris oscura	14.49% - 22.57%	4.19% - 17.38%	3-1-1-2 a 1-2-1-1		
1.30 2.40	Arcilla	Verdosa Amarillenta	52.13%	95.02%			
2.40 3.90	Arcilla	Verdosa Amarillenta	96.34%				
3.90 12.90	Arcilla	Gris verdosa	99.35% - 104.14%	93.71% - 95.30%			
12.90 17.35	Arena arcillosa	Gris verdosa	49.75% - 50.93%	43.55% - 38.55%	3-4-4 a 3-4-6		
17.35 20.35	Arcilla	Gris verdosa	74.39% - 81.08%	81.66% - 87.75%	3-3-3 a 2-3-3		
20.35 23.35	Arcilla turbosa Arcilla gris	Oscura con material vegetal	75.94% - 91.29%	83.03% - 92.38%	2-2-3		
23.35 24.85	Turba	Material vegetal en descomposición	92.76%	54.86%	3-3-4		
24.85 26.35	Limo arcilloso	Verdoso	26.22%	54.86%	8-17-30		
26.35 30.55	Arena fina limosa	Gris	32.11% - 20.63%	36.42% - 15.28%	14-33-50/4" a 47-50-50/4"		

Tabla XCaracterísticas del suelo en zona de implantación – Perforación #05.

Fuente: Estudio de suelo. Consultora LAMSCO.

	Perforación #07						
Profundidad	Tipo de Suelo	Coloración	Porcentaje de Humedad	Pasante del tamiz #200	Número de Golpes Ensavo SPT		
0.00 1.30	Grava arenosa arcillosa	Café clara	8.55%	8.29%	4-4-5-6		
1.30 2.40	Arcilla gris	Verdosa oscura	56.01%	96.36%			
2.40 3.90	Arcilla	Amarilla verdosa	85.81%	98.63%			
3.90 15.85	Arcilla	Gris verdosa	100.23% - 67.89%	96.08% - 80.92%			
15.85 18.85	Arena arcillosa	Gris	77.05% - 63.17%	73.37% - 70.40%	3-8-10 a 4-4-4		
18.85 20.35	Arcilla	Gris verdosa	74.65%	88.02%	3-2-3		
20.35 21.85	Arcilla turbosa Arcilla gris	Oscura con material vegetal	89.22%	98.49%	2-3-3		
21.85 23.35	Turba	Material vegetal en descomposición	79.94%	69.18%	3-4-4		
23.35 27.85	Limo arcilloso arenoso	Verdoso	29.37% - 27.98%	57.40% - 52.95%	6-8-8 a 10-19-19		
27.85 30.80	Limo arcilloso arenoso	Gris	27.22% - 28.63%	28.80% - 29.24%	25-35-50/5" a 50-50/5"		

Tabla XI Características del su	elo en zona de implantaci	ón – Perforación #07.
---------------------------------	---------------------------	-----------------------

Fuente: Estudio de suelo. Consultora LAMSCO.

Bajo estos resultados obtenidos, se establece la necesidad de una cimentación con pilotes rectangulares de hormigón armado que penetren una distancia mayor o igual a 1m el estrato resistente en la zona de implantación.

2.3.2. Descripción de la cimentación

La cimentación está conformada por pilotes de 26 a 28 m de altura y de sección transversal de 0.25 m^2 de hormigón pretensado, unidos mediante vigas

cabezales centradoras de carga en los puntos que es necesario. Se utilizó hormigón cuya resistencia a la compresión es de 350kg/cm² y acero de refuerzo de 4200 Kg/cm² en cuanto su resistencia a la fluencia.

Se fundió un contrapiso de hormigón armado de 14 cm de alto sobre un relleno compactado al 95% de su valor proctor modificado. Adicionalmente, se fundieron vigas riostras para atado de los cabezales descritos, de manera que se logre absorber las posibles acciones horizontales que pueden recibir los cimientos, evitando desplazamientos horizontales relativos entre los elementos descritos.

Sobre los cabezales se fundieron dados rectangulares cuyas dimensiones varían de acuerdo a su posición, estos servirán para anclaje de la placa base de 30 mm de espesor, unida mediante varillas de 12 mm de diámetro, donde se soldará, mediante soldadura de penetración completa, las columnas metálicas rellenas de hormigón colaborante de la estructura.

2.4. Sistemas de protección sísmica para edificaciones

El control de las estructuras sujetas a excitaciones sísmicas representa una tarea desafiante para la ingeniería civil, el enfoque de diseño está basado en la combinación de resistencia, rigidez y capacidad de disipación de energía en el rango inelástico de la estructura, tomando como condición su ductilidad. Estos sistemas de control no poseen un comportamiento dinámico independiente de la estructura, sino que se activan con la interacción que tengan con ella para mitigar y controlar la respuesta de la edificación ante un evento sísmico. Edward L. Wilson, profesor emérito de Ingeniería Estructural de la universidad de California, define que la energía disipada por estos sistemas, se la calcula mediante un modelo matemático basado en la mecánica newtoniana, de manera específica en su segunda ley, la ecuación dinámica de equilibrio, ya que toda estructura responde dinámicamente ante la acción de cargas o deformaciones incitando fuerzas inerciales iguales a su masa por aceleración.

Cuando una estructura se somete a cargas dinámicas o deformaciones rápidas, como lo es en caso de un sismo, las fuerzas inerciales generadas no son despreciables por lo que se considera el análisis dinámico del sistema.

En el capítulo 12 del texto "Three Dimensional Static and Dynamic Analysis of Structures A Physical Approach with Emphasis on Earthquake Engineering" se presenta un modelo basado en una masa concentrada m que es soportada por un elemento de rigidez k, con un coeficiente de amortiguamiento viscoso c propio del sistema.

La carga sísmica se caracteriza por un desplazamiento en el terreno $x_g(t)$. La respuesta del sistema consiste en determinar el desplazamiento de la masa en cualquier instante con respecto a su posición inicial general, $x_t(t)$, lo que se calcula en función del desplazamiento en el terreno y el desplazamiento de la masa con respecto a su base, como se observa en la figura 1. De donde:

$$x_t(t) = x_g(t) + x(t)$$

Figura 2.8 Modelo del sistema de un grado de libertad Fuente: Oviedo, J.A., Duque, M.P. (2009). Situación de las Técnicas de Control de Respuesta Sísmica en Colombia. Revista EIA, Medellín-Colombia

Para las condiciones descritas, la ecuación de equilibrio dinámico se escribe como:

$$m\ddot{x}+c\dot{x}+kx=-m\ddot{x}_{g}$$

Donde:

cx

mix representa la fuerza inercial de la masa de la estructura

es el amortiguamiento inherente del sistema

 $k \pi$ es la fuerza elástica del sistema

Para el análisis del comportamiento y respuesta de la estrutura, se deberá utilizar el concepto de energía, por lo que se multiplica cada término de la ecuación por el desplazamiento *dx*, expresado como *xdt*, para encontrar el trabajo realizado.

Al integrar la ecuación con respecto al tiempo, se obtiene la ecuación de balance de energía desarrollado en el sistema estructural:

$$E_K + E_D + E_S = E_1$$

Donde:

 E_K es la energía cinética de la masa m

 E_D es la energía disipada por el amortiguamiento inherente de la estructura

E_S es la energía de deformación elástica del sistema

 E_1 es la energía impuesta por las cargas dinámicas

P. Fajfar y H. Krawinkler (2005) detallan que en el caso de que el sistema alcance a responder en el rango inelástico de los meteriales, el término E_s estará dado por la función $f_s(x)$ que describe la respuesta elástica y la inelástica histerética en el cálculo de la energía total, generalmente igual a la energía máxima de entrada a excepción de las estructuras de periodo corto y estructuras con el pulso de velocidad muy grande, lo que resultaría en:

$$E_S = E_{S_S} + E_{S_p}$$

Donde:

 E_{S_s} es la energía de deformación elástica no disipada

 E_{S_p} es la energía disipada por efectos histeréticos de deformación plástica y daño en los elementos estructurales.

Cuando en la estructura se implementan dispositivos especiales disipadores o amortiguadores de energía, se debe introducir un término a la ecuación de balance de energía que permitan describir su aportes para al sistema, se denotará como E_p y se calcula en relación al operador integro-diferenciación representativo de la disipación de energía proporcionada por dispositivos adicionales. (Oviedo & Duque , 2006)

$$E_p = \int \Gamma \overline{x} dx$$

Por lo que, la ecuación de balance de energía quedaría:

$$E_K + E_D + E_{S_s} + E_{S_n} + E_p = E_1$$

Las técnicas de control de respuesta sísmica, tienen como objetivo aumentar la energía E_{S_p} disipada por la histéresis propia de la estructura y E_p energía disipada por los dispositivos adicionales instalados en el sistema, de manera que disminuye la participación de los componentes estructurales en la respuesta inducida y con ello, el nivel de daños en la estructura.

Otra forma de disipación de energía por histéresis de la estructura, consiste en modificar la energía de entrada al sistema E_1 . (Oviedo & Duque, 2006)

Acorde con la Norma Ecuatoriana de la Construcción, Peligro Sísmico Diseño Sismo resistente, los sistemas de control estructural utilizados para el diseño sismo resistente no convencional de estructuras son clasificados en:

- Sistemas de aislamiento sísmico,
- Sistemas de disipación pasiva de energía,
- Sistemas de control activo.

2.4.1. Sistema de Control Activo

En los sistemas de control activo, se utilizan dispositivos que responden según las solicitaciones impuestas por el sismo, activándose por medio de una fuente externa de energía. Entre los dispositivos utilizados en esta técnica se cuenta con:

- Sistemas de efecto de masa
- Sistemas de control pasivo de disipación de energía.

Figura 2.9 Técnica de control activo de disipación de energía Fuente: Oviedo, J.A., Duque, M.P. (2009). Situación de las Técnicas de Control de Respuesta Sísmica en Colombia. Revista EIA, Medellín-Colombia

Su funcionamiento se basa en recibir información de las respuestas (derivas, rotaciones), por medio de sensores que se encargan de medir las variables y calculan la fuerza necesaria para accionar los actuadores de control y contrarrestar la acción sísmica. Los actuadores de control presentan una gran desventaja debido a que necesitan de fuentes de energía para su funcionamiento, por lo que no funcionarían en caso de falla en el suministro de energía.

2.4.2. Sistema Pasivo de disipación de energía

Los sistemas de control pasivo se basan en elementos que responden de forma inercial a la acción sísmica y, a diferencia del resto de sistemas, no precisan de aporte energético para su funcionamiento (Mayorga Vela, 2011).

Se clasifican en dos categorías:

• Histeréticos,

Viscoelásticos

Los dispositivos histeréticos se basan en la plastificación de metales por flexión, torsión, cortante o extrusión y en la fricción entre superficies. Son dispositivos que dependen básicamente del desplazamiento.

Los disipadores viscoelásticos pueden basarse en: sólidos viscoelásticos, fluidos conducidos a través de orificios y fluidos viscoelásticos. Su comportamiento depende fundamentalmente de la velocidad que adquieran los elementos estructurales. (Mayorga Vela, 2011)

Por lo general, se instalan en riostras diagonales dentro de los pórticos de la estructura o como complemento al sistema de aislamiento sísmico en la base, entre la fundación y la plataforma de aislamiento.

Entre los principales dispositivos para el control pasivo se resaltan por su economía y funcionalidad los disipadores metálicos, histeréticos, basados en deformación plástica; especialmente los de acero que, debido a su homogeneidad, se convierten en un tipo de disipador de fácil caracterización mecánica. Algunos de los disipadores metálicos de acero usados en el mundo son las placas a flexión, los amortiguadores torsionales de barras, los anillos amortiguadores de fluencia y las riostras metálicas.

Figura 2.10 Técnica de control pasivo con disipadores de energía Fuente: Oviedo, J.A., Duque, M.P. (2009). Situación de las Técnicas de Control de Respuesta Sísmica en Colombia. Revista EIA, Medellín-Colombia

En este modelo son evidentes las ventajas del uso de los dispositivos disipadores de energía en edificaciones. Algunas de ellas son: reducción de la demanda sísmica en la estructura principal, concentración del daño en puntos y elementos identificados y fáciles de sustituir después de un evento sísmico significativo y, en algunos casos, aumento de la rigidez de la edificación, lo que trae consigo la protección a los elementos no estructurales como muros y acabados.

2.4.3. Sistema de aislación sísmica base

Este sistema consiste en la instalación de equipos, generalmente en el nivel más bajo del edificio, con el fin de atenuar de forma parcial la energía impuesta por el sismo antes de que esta sea transmitida a la estructura.

Los dispositivos utilizados para el aislamiento sísmico base son:

- Aisladores flexibles
- Aisladores de fricción deslizantes o basculantes
- Amortiguadores o elementos flexibles
- Apoyos deslizantes

El trabajo de esta combinación de los aisladores que trabajan en el rango elástico y los amortiguadores con comportamiento elasto-plástico, reduce el término E_1 de la ecuación antes descrita, haciendo que la energía total para balance por amortiguamiento sea menor.

Figura 2.11 Técnica de aislamiento sísmico en la base Fuente: Oviedo, J.A., Duque, M.P. (2009). Situación de las Técnicas de Control de Respuesta Sísmica en Colombia. Revista EIA, Medellín-Colombia En el caso de los aisladores flexibles, la reducción de energía ocurre por el aumento del período de vibración de la estructura, alejándolo del período de vibración natural del suelo. Por otro lado, los aisladores de fricción reducen la energía por medio del deslizamiento entre el edificio y la cimentación. Para edificios con períodos largos de vibración el uso de aisladores no es muy recomendado, ya que su presencia no implicaría un cambio drástico en las fuerzas de entrada a la superestructura.

CAPÍTULO 3

3. ANÁLISIS DE LA ESTRUCTURA

Con el objetivo de realizar un correcto análisis estructural se usa el programa ETABS v15 para generar el modelo estructural y determinar las solicitaciones de la estructura sujeta al sismo de diseño, así como las fuerzas cortantes producidas, momentos generados y cálculo de las derivas de piso para comprobación con la Norma Ecuatoriana de la Construcción, Peligro Sísmico Diseño Sismo resistente, y proceder a determinar los elementos de protección sísmica que podrán ser utilizados en ella.

3.1. Características físicas de la estructura

El proyecto de remodelación del Estadio Capwell, Torre 4, consiste en una estructura tipo edificación que será destinada para accesos mediante escaleras hacia los otros edificios y albergarán 2 suites corporativas para la visualización de los eventos deportivos.

3.1.1. Materiales y Secciones de la estructura metálica

La estructura de la edificación define su tipología como pórticos tridimensionales intermedios resistentes a momento en acero estructural. Los

materiales a usarse en la elaboración de los componentes de la torre 4 corresponden a:

Tabla XII Característi	cas de los Materiales de Construcción para Torre 4.
Acero estructural:	Planchas de acero ASTM A572, Gr 50 Fy= 50 ksi (3523 Kg/cm2)
	Planchas de acero ASTM A36, Gr 36 Fy= 36
	ksi (2536.56 Kg/cm2)
Conexiones:	Soldaduras
	Procesos: SMAW – GMAW - FCAW - SAW
Hormigón columnas	F'c= 280 kg/cm².
Hormigón en losas	F'c= 240 kg/cm².

Fuente: Autores

Las columnas serán rellenadas con hormigón de F'c= 280 kg/cm², cuyo tamaño máximo del agregado será igual a ¹/₂" y con un revenimiento de 15 cm. Luego de fundidas las columnas, serán curadas con aditivo antisol.

Para los elementos de acero estructural, las uniones placa-columna y viga-columnas serán considerados como soldaduras de demanda crítica.

Especificación del Electrodo	Clasificación	Proceso
AWS A5. 1	E70 18-AR	Arco metálico protegido
		Soldadura por arco con alambre
AWS A5.18	ER 70S-6	sólido y protección gaseosa
		Alambre tubular con núcleo
AWS A5.20	E71T - 1C	fundente y protección gaseosa
		Alambre tubular con núcleo
AWS A5.20	E71T - 8	fundente autoprotegido
AWS A5.17	F7A2 - EM12K	Arco sumergido
Fuente: Kl	AFRE Estructuras	RAG-Ingeniería Estructural

Tabla XIII Proceso de Soldadura en elementos de acero estructural para la Torre 4

Fuente: KLAERE Estructuras, RAG-Ingeniería Estructural. Archivo: CAPWELL -T4-20JUNIO2016.gwg

Figura 3.1 Detalle de conexión sísmica viga-columna **Fuente:** KLAERE Estructuras, RAG-Ingeniería Estructural. Archivo: CAPWELL-CIMENTACIÓN-T4-23MARZO2016.gwg

Figura 3.3 Detalle de soldadura viga-columna del patín inferior **Fuente:** KLAERE Estructuras, RAG-Ingeniería Estructural. Archivo: CAPWELL-CIMENTACIÓN-T4-23MARZO2016.gwg

Figura 3.4 Detalle de conexión sísmica viga – columna **Fuente:** KLAERE Estructuras, RAG-Ingeniería Estructural. Archivo: CAPWELL-CIMENTACIÓN-T4-23MARZO2016.gwg

La FEMA 350 clasifica este tipo de conexión sísmica como conexión precalificada soldada y totalmente restringida, WUF-W Welded Unreinforced Flange - Welded Web (Alas Soldadas no Reforzadas-Alma Soldada), especial para marcos especiales de momento SMF.

En los planos se especifica el uso de soldadura de ranura de penetración completa en los patines superior e inferior. Con ayuda de una platina de respaldo, colocar una soldadura de filete debajo de la platina. También se detalla que el tamaño del filete adyacente a la columna será de un mínimo de 10 mm. Se utilizará una soldadura de ranura de penetración completa a lo alto de la longitud del alma, entre los agujeros de acceso y para la placa de cortante dispuesta a los lados del alma de la viga, se utilizará una soldadura de penetración parcial a todo lo alto de la unión entre la placa de cortante y la columna y soldadura de filete entre la placa de cortante y el alma de la viga.

Las conexiones viga-columna se asumirán como conexiones casi rígidas que teóricamente no permiten rotación en los extremos de la viga, transfieren el casi 85% del momento de empotramiento y proporcionan continuidad entre los miembros de la estructura (McCormac & Csernak, 2013). Se colocarán placas atiesadoras en las almas de las vigas de manera que se proporcione la resistencia suficiente a la rotación de la misma.

La estructura metálica principal, responsable de estabilizar y transmitir las cargas impuestas a la cimentación, está compuesta por los siguientes elementos:

		Alas	Superior	- Inferior	Alma		
Vigas tipo	I	tf (mm)	bf (mm)	Fy (Ksi)	tw (mm)	bw (mm)	Fy (Ksi)
	VP X-Y	8	120	50	4	400	36
	VP1 X-Y	8	140	50	5	450	36
Vigas Principales	VP2 X	10	150	50	5	500	36
	VP3 X	12	200	50	6	500	36
	VPL X-Y	8	120	50	4	400	36
Vigas	VS	5	100	36	3	300	36
Secundarias	VB	6	120	36	4	400	36

Tabla XIV Dimensiones y materiales de vigas metálicas del sistema.

Fuente: KLAERE Estructuras, RAG-Ingeniería Estructural. Archivo: CAPWELL -T4-20JUNIO2016.gwg

 Tabla XV Dimensiones y materiales de columnas metálicas del sistema.

Columna	Socción			Ejes		
Columna Cuadi	rada	Eje 90	Eje 91	Eje 92	Eje 1A	Eje 88
Fy (M	(si)	50	50	50	50	50
Sección 1	b1 (mm)	400	400	400	400	400

Columna	Sacaián			Ejes		
Columna Cuadi	rada	Eje 90	Eje 91	Eje 92	Eje 1A	Eje 88
	h1 (mm)	500	450	450	500	400
	e1 (mm)	8	8	8	8	8
	b2 (mm)	400	400	400	400	
Sección 2	h2 (mm)	400	400	400	400	
	e2 (mm)	8	8	8	8	
	b3 (mm)	400	400	400	400	
Sección 3	h3 (mm)	400	400	400	400	
	e3 (mm)	8	8	8	8	
	b4 (mm)	200	200	400		
Sección 4	h4 (mm)	200	200	400		
	e4 (mm)	4	4	8		

Fuente: KLAERE Estructuras, RAG-Ingeniería Estructural. Archivo: CAPWELL -T4-20JUNIO2016.gwg

Para la losa de la estructura se utilizó un sistema de losa Steeldeck que aprovecha las características de una lámina de acero junto con el vaciado del concreto, lo que resulta en un sistema de alta resistencia y bajo peso.

El espesor de la lámina utilizada es de 0.76 mm, adicionalmente se colocaron conectores de corte de elementos de perfil U 150x50x3 mm de Fy=36Ksi, para alcance de la resistencia última del sistema, separados 33 cm entre sí y una malla electrosoldada, para control por retracción y temperatura y soportar la totalidad de las cargas actuantes, de diámetro de varilla de 5 mm con separaciones de 150 mm.

Se utilizó una concreto de F'c= 240Kg/cm² y un recubrimiento de 3mm, lo que indica una altura total de la losa de 123 mm.

Figura 3.5 Detalle del sistema Steeldeck para losa **Fuente:** KLAERE Estructuras, RAG-Ingeniería Estructural. Archivo: CAPWELL-CIMENTACIÓN-T4-23MARZO2016.gwg

Las escaleras están compuestas por una losa steeldeck soportada por vigas tubulares de 100x150x4 mm. Para el modelo se crearán áreas que simulen las cargas impuestas por éstas y su participación en el sistema.

3.2. Modelo del Sistema

Los edificios de acero estructurados en base a marcos de momento se deben modelar, analizar y diseñar como elementos ensamblados tridimensionalmente con el propósito de determinar correctamente la resistencia y desplazamientos requeridos.

Para pórticos con conexiones totalmente restringidas (FR), se permite modelar los elementos de eje a eje con el propósito de determinar la rigidez de las vigas y columnas. (Zambrano Leiva , 2008).

En el siguiente apartado se realizará un paso a paso del modelo con el cual se pudieron determinar las características dinámicas de la estructura metálica. Se indicarán procesos de definición de elementos, asignación de materiales y cargas, análisis de la estructura ante la acción de un espectro de diseño inelástico y la interpretación de los resultados obtenidos.

Primero se debe tener una idea clara del interfaz que muestra el programa de diseño, usualmente aparecen 3 ventanas las cuales presentan el explorador del modelo (ventana izquierda), mientras que en la parte central y lateral derecho se tienen dos ventanas las cuales se pueden configurar para presentar los tipos de planos en los que se puede visualizar el modelo.

3.2.1. Definición de la configuración geométrica de la estructura

Se va a definir un nuevo modelo, seleccionando el primer ícono izquierdo de la barra de menú (símbolo: hoja en blanco), se desplegará la siguiente ventana en la cual se puede escoger entre tres opciones para comenzar a definir el modelo. En este caso se escogerá *Use Built-in settings*, debido a que se puede estipular las normas, códigos y reglamentos con los cuales se comenzará a definir el modelo.

Use Saved User Default Settings		0
Use Settings from a Model File		0
O Use Built-in Settings With:		
Display Units	U.S. Customary	\sim
Steel Section Database	AISC14	\sim
Steel Design Code	AISC 360-10	\sim
Concrete Design Code	ACI 318-14	\sim
on a do bongh obbo		

Figura 3.7 Selección del tipo de modelo predeterminado Fuente: Etabs 2015 versión 15.2.0.

Posteriormente saldrá la ventana inferior, en la cual se definirán el número de ejes y el espaciamiento que servirán como referencia para trazar los elementos de la estructura, del mismo modo se establecerán todas las características físicas del modelo, sean estos: número de pisos, altura de entrepisos, etc.
Number of Grid Line	es in X Direction		4	Nur	iber of Stories	8	
Number of Grid Line	es in Y Direction		4	Тур	ical Story Height	4	
Spacing of Grids in	X Direction		5 m	Bott	om Story Height	3	
Spacing of Grids in	Y Direction		4 m				
Specify Grid Labelin	ng Options		Grid Labels				
O Custom Grid Spacin	9			O Cust	iom Story Data		
Specify Data for Gri	id Lines		Edit Grid Data	Spe	cify Custom Story Data	E	dit Story Data
Add Structural Objects							
	+++++++	<u>і—н—і</u>	н-н-н	a es e			
		+ +		8 D B			
	+++++++	<u>і — н — і</u>	Ин				
Blank	Grid Only	Steel Deck	Stangered Truss	Flat Slab	Elat Clab with	Waffle Slab	Two Way o

Figura 3.8 Definición de características físicas del edificio Fuente: Etabs 2015 versión 15.2.0.

Debido a la irregularidad en planta de la estructura a analizar, se deberán hacer algunas correcciones en los ejes definidos anteriormente. Para ello clic derecho en cualquiera de las ventanas que contienen el modelo y escoger la opción *Add/Modify Grids*, se desplegará una nueva ventana en la cual se modificará el sistema de grillas existente.

Story8 Story7 Story6 Story5 Story4 Story3	Modify/Show Story Data
Story2 Story1 Base	Quick Add Story
	Set Story Names to Default
	Madda / Shaw Gid Sudam
	Modify/Show Grid System
	Modify/Show Gird System Debte Gird System
	Modfy/Show Grid System Delete Grid System Copy Existing Grid System
	Modfy/Show Grid System Belete Grid System Copy Existing Grid System Add from .dd/dwg File Add New from .dd/dwg File

Figura 3.9 Ventana para modificar características de los ejes establecidos Fuente: Etabs 2015 versión 15.2.0.

Figura 3.10 Características de la grilla predeterminada Fuente: Etabs 2015 versión 15.2.0.

El modelo de la estructura está compuesto por 3 ejes en la dirección X, 4 ejes en dirección Y, 10 plantas en la dirección Z como se observa en la figura de planta y elevación del sistema.

Figura 3.11 Esquema de planta y ubicación de columnas de la Torre 4 **Fuente:** KLAERE Estructuras, RAG-Ingeniería Estructural. Archivo: CAPWELL-CIMENTACIÓN-T4-23MARZO2016.gwg

Una vez definidas las distancias entre ejes de la grilla, se procede a modificar las alturas de entrepiso mediante la opción *Modify/show story data*. Con ayuda de los planos estructurales se ajustan las distancias correspondientes a cada piso y se le asigna un color a cada piso para diferenciarlos.

Figura 3.12 Esquema de pórticos de la Torre 4 Fuente: KLAERE Estructuras, RAG-Ingeniería Estructural. Archivo: CAPWELL -T4-20JUNIO2016.gwg

	Story	Height	Elevation m	Master Story	Similar To	Splice Story	Splice Height m	Story Color m
•	P9	3,77	31,5	No	P3	No	0	
	P8	3,75	27,73	No	P3	No	0	
	P7	4,68	23,98	No	P3	No	0	
	P6	2,7	19,3	No	P3	No	0	
	P5	2,88	16,6	No	P3	No	0	
	P4	2,85	13,72	No	P3	No	0	
	P3	3,24	10,87	Yes	None	No	0	
	P2	3,24	7,63	No	P3	No	0	
	P1	4,39	4,39	No	None	No	0	
	BASE		0					
Note: Rigi	nt Click on Grid for Optic	ns						

Figura 3.13 Ajuste de alturas de entrepiso Fuente: Etabs 2015 versión 15.2.0.

El FEMA-350 sugiere realizar un análisis multidireccional para aquellas estructuras que son completamente irregulares en planta y elevación como se observa en los esquemas mostrados de la Torre 4 en cuestión.

Para la elaboración del modelo en el programa ETABS v15.2, se definieron los ejes, materiales y secciones de la estructura acorde con los planos entregados por la empresa RAG Ingeniería Estructural, institución encargada de la revisión de los mismos.

El siguiente paso consiste en la definición de los materiales que se usarán para cada elemento de la estructura, hay que recalcar que los materiales predominantes son acero ASTM A36, ASTM A572 Gr50, hormigón de relleno de columnas de resistencia 280 kg/cm2 mientras que para las losas 240 kg/cm2.

En la pestaña *Define* se debe seleccionar la opción *Material Properties* con la cual se despliega una ventana para ingresar características de los materiales predefinidos por el programa o personalizar un material a criterio del diseñador. En este caso se denominarán a los materiales como A36-1; A572Gr50; FC240 y 4000psiM. Al seleccionar la opción *Add new material* se pueden definir las características del tipo de materiales con el que se vaya a trabajar.

Matenais	Click to:
OTHER EC240	Add New Material
A615Gr60	Add Copy of Material
A572Gr50 A653SQGr50	Modify/Show Material
3000Psi A36-1	Delete Material
	OK Cancel

Figura 3.14 Definición de materiales a usar Fuente: Etabs 2015 versión 15.2.0.

Se ajustan cada una de las propiedades físicas de los materiales a usar, por ejemplo: peso específico, módulo de elasticidad, coeficiente de poisson, coeficiente de expansión térmica y módulo de cortante.

Material Name	h 26 1		_		
	P-30-1	H30-1			
Matenai Type	Steel	Isotropic V			
Directional Symmetry Type	Isotropic				
Material Display Color					
Material Notes	Mod	fy/Show Notes			
Material Weight and Mass					
Specify Weight Density	O Spe	ecify Mass Density			
Weight per Unit Volume		7849,05	kgf/m³		
Mass per Unit Volume		7849,047	kg/m³		
Mechanical Property Data					
Modulus of Elasticity, E		20389,02	kgf/mm²		
Poisson's Ratio, U		0,3			
Coefficient of Thermal Expansion,	A	0.0000117	1/C		
Shear Modulus, G		7841,93	kgf/mm ²		
Design Property Data					
Modify/Show	Material Propert	y Design Data]		
Advanced Material Property Data					
Nonlinear Material Data		Material Damping P	roperties		
Time		erties			

Figura 3.15 Características del acero A36 Fuente: Etabs 2015 versión 15.2.0.

Material Name	kooon-w		_	
Matenal Name	HUUUPSIM			
Material Type	Concrete	~		
Directional Symmetry Type	Isotropic	\sim		
Material Display Color		Change		
Material Notes	Modi	fy/Show Notes		
Material Weight and Mass				
Specify Weight Density	O Spe	ecify Mass Density		
Weight per Unit Volume		2400	kgf/m³	
Mass per Unit Volume		2400	kg/m³	
Mechanical Property Data				
Modulus of Elasticity, E		2154,29	kgf/mm²	
Poisson's Ratio, U		0.2		
Coefficient of Thermal Expansion, A		0,000099	1/C	
Shear Modulus, G		897,62	kgf/mm ²	
Design Property Data				
Modify/Show Ma	aterial Propert	y Design Data]	
Advanced Material Property Data				
Nonlinear Material Data		Material Damping P	roperties	
Time De	ependent Prop	perties		

Figura 3.16 Características del hormigón de relleno de columnas Fuente: Etabs 2015 versión 15.2.0.

Una vez establecidos los materiales se procederá a definir las secciones correspondientes a cada elemento estructural según los planos pertinentes. Para ello clic en la pestaña *Define*, opción *section properties*, posteriormente escoger frame sections y finalmente *Add new property* para establecer las características de cada sección con las que se vaya a trabajar.

ilter Properties List	Click to:
Type All	✓ Import New Properties
Filter	Clear Add New Property
meties	Add Copy of Property
Find This Property	Modify/Show Property
C20X20X4	
C20X20X4 C400X400X8	Delete Property
C400X470X10 C400X550X10 1	Delete Multiple Properties
C450X400X8 C500X400X10	
CL 400X950X10 CM100X200X4	Convert to SD Section
PT250X160X5 U150X50X3	Copy to SD Section
VC100X200X4 VI100X3X150X6	
VI100X5X300X3 VI120X6X350X4	Export to XML File
VI120X8X400X4 VI140X8X450X5	
VI200X12X500X6	
VM200X200X4 VM250X120X4	
VM250X120X4	

Figura 3.17 Definición de secciones de elementos a usar Fuente: Etabs 2015 versión 15.2.0.

Property Name	VC100X200X4			
Material	A36-1		~	2
Display Color		Change		3
Notes	Modify	/Show Notes		↓ ← ↓
Shape				
Section Shape	Steel Tube		\sim	
Section Property Source				
Source: User Defined				
Section Dimensions				Property Modifiers
Total Deoth		100	mm	Modify/Show Modifiers
Total Width		200		Currently Default
		200		
Hange Thickness		4	mm	
		4	mm	
Web Thickness		0	mm	
Web Thickness Comer Radius				
Web Thickness Comer Radius				OK

Figura 3.18 Sección tubular hueca de acero para elementos diagonales Fuente: Etabs 2015 versión 15.2.0.

Como se puede observar existe la posibilidad de ajustar las dimensiones para cada sección, del mismo modo es conveniente asignar los materiales acordes al elemento que se esté diseñando. Se visualizará un esquema de la sección en la esquina superior derecha, la cual irá variando de acuerdo a los cambios realizados.

General Data				
Property Name	C500X400X10			
Material	A572Gr50		×	2
Display Color		Change		3
Notes	Modify/	Show Notes		← +
Shape				
Section Shape	Filled Steel Tub	•	\sim	
Section Property Source]
Source: User Defined				
Section Dimensions				Property Modifiers
Total Depth		400	mm	Modify/Show Modifiers
Total Width		500	mm	
Flange Thickness		10	mm	
Web Thickness		10	mm	
Comer Radius		0	mm	
	Show Section Properties			
	anon account ropenes.			
				OK

Figura 3.19 Sección compuesta para elementos verticales de la estructura Fuente: Etabs 2015 versión 15.2.0.

Property Name	VI100X3X150X6		
Material	A36-1	~	2
Display Color		Change	3
Notes	Modify/Sho	w Notes	č – –
Shape			
Section Shape	Steel I/Wide Flange	~	
Section Property Source			
Source: User Defined			
Section Dimensions			Property Modifiers
Total Depth	1	150 mm	Modify/Show Modifiers
Top Flange Width	[1	100 mm	Currently Default
	[3 mm	
Top Flange Thickness			
Top Flange Thickness Web Thickness	e	5 mm	
Top Flange Thickness Web Thickness Bottom Flange Width	[e	5 mm	
Top Range Thickness Web Thickness Bottom Range Width Bottom Range Thickness		5 mm 100 mm 3 mm	
Top Range Thickness Web Thickness Bottom Range Width Bottom Range Thickness Fillet Radius	(]] [8 mm 100 mm 9 mm 9 mm	ОК

Figura 3.20 Perfil I para uso como elemento viga Fuente: Etabs 2015 versión 15.2.0.

Un aspecto muy importante a establecer consiste en el tipo de apoyo que se va a considerar para la estructura, el cual va a ser el principal nexo entre los elementos estructurales y el terreno. Generalmente se considera un empotramiento como tipo de apoyo, puesto que esta opción proporciona un impedimento en cuanto a la traslación y rotación en los distintos ejes, que es lo que se busca idealmente en el sistema de soporte de cualquier estructura. Ubicando la ventana en el plano de base se seleccionan todos los nodos existentes, en la pestaña *Assign* opción *Joint* se escoge la opción *Restraints* y por último se da clic en el ítem de Apoyos Empotrados, inmediatamente se restringirán las libertades de traslación y rotación del modelo.

Figura 3.21 Selección del tipo de apoyos para los nodos del piso base Fuente: Etabs 2015 versión 15.2.0.

Joint	Assignment - Restraint	is	×
	Restraints in Global Direc	lions	
	Translation X	Rotation about X	
	Translation Y	Rotation about Y	
	Translation Z	Rotation about Z	
	Fast Restraints	<u>\</u>	
	ОК С	lose Apply	

Figura 3.22 Ventana de tipos de apoyo estructural, Apoyos empotrados Fuente: Etabs 2015 versión 15.2.0.

Establecidos los elementos tipo frame con sus secciones respectivas, es importante definir además los elementos tipo área que van a ser utilizados como losas y áreas para el sistema de escaleras. En la pestaña *Define* escoger *Section Properties* y como primer lugar se elegirá *Slab sections* para las áreas de escaleras que se

idealizan como losas macizas. Mientras que para la losa con Steel panel, se escogerá la opción *Deck sections*.

Slab Properties	
Slab Property	Click to:
ESCALERA 1 ESCALERA 2	Add New Property
	Add Copy of Property
	Modify/Show Property
	Delete Property
	ОК
	Cancel

Figura 3.23 Propiedades de losa maciza para escaleras de acceso Fuente: Etabs 2015 versión 15.2.0.

Se van a definir dos tipos de espesores de losas macizas para escaleras, como primer ítem escaleras 1 será utilizado para los accesos en los primeros pisos, ya que una gran cantidad de personas recorrerán por este medio para dirigirse hacia niveles superiores, lo que se idealiza como una gran cantidad de carga viva y consecuentemente será necesario un espesor mayor de losa. Mientras que para los pisos superiores donde el tráfico de personas es menor se requerirá un espesor de losa menor, por lo tanto, se definirá el ítem escaleras 2.

Property Name	ESCALERA 1
Slab Material	FC240 ~
Notional Size Data	Modify/Show Notional Size
Modeling Type	Shell-Thin \checkmark
Modifiers (Currently Default)	Modify/Show
Display Color	Change
Property Notes	Modify/Show
Туре	Slab \checkmark
Туре	Slab 🗸
Thickness	250 mm

Figura 3.24 Propiedades de losa maciza para escaleras 1 Fuente: Etabs 2015 versión 15.2.0.

Property Name	ESCALERA 2	
Slab Material	FC240	~
Notional Size Data	Modify/Show Notional	Size
Modeling Type	Shell-Thin	\sim
Modifiers (Currently Default)	Modify/Show	
Display Color	Char	nge
Property Notes	Modify/Show	
Туре	Slab	~
Туре	Slab	\sim
	1450	mm
Thickness	150	
Thickness	150	
Thickness	150	
Thickness	150]
Thickness	150	

Figura 3.25 Propiedades de losa maciza para escaleras 2 Fuente: Etabs 2015 versión 15.2.0.

Para ambas losas se usará hormigón de 240 kg/cm2 y se escogerá Shell-thin como el tipo de modelo para las losas de escaleras. El elemento thin se usa para modelar elementos de espesor pequeño, generalmente L/h>20, siendo L la longitud en dirección a la flexión del elemento y h la altura. Cuando se usa Shell-thin el programa no contempla en el análisis las deformadas por cortante.

Deneral Data	D. 170	_
Property Name	Deck/b	
Туре	Filled	< 0
Slab Material	FC240	·
Deck Material	A36-1	·
Modeling Type	Membrane	1
Modifiers (Currently Default)	Modify/Show	
Display Color	Change	
Property Notes	Modify/Show	
Property Data		
Slab Depth, tc	68	mm
Rib Depth, hr	52	mm
Rib Width Top, wrt	201	mm
Rib Width Bottom, wrb	134	mm
Rib Spacing, sr	330	mm
Deck Shear Thickness	0.7	mm
Deck Unit Weight	6,09	kgf/m²
Shear Stud Diameter	19,1	mm
Shear Stud Height, hs	152,4	mm
Shear Stud Tensile Strength, Fu	45.7	kgf/mm²

Figura 3.26 Propiedades de losa con Steel pannel Fuente: Etabs 2015 versión 15.2.0.

Para las losas de los entrepisos se usará hormigón de 240 kg/cm2 con la particularidad de que compartirá sección con una plancha de Steel deck, solo se

requieren ajustar las medidas en el apartado de *Property data*. El tipo de modelo de esta losa se tomará como membrana puesto que solo se deforma en su plano y no permite deflexiones fuera del mismo, además transmite su carga por ancho tributario de manera rígida. Es ideal para este tipo de composición de losas.

Figura 3.27 Esquema de las características físicas de losas con Steel deck Fuente: Etabs 2015 versión 15.2.0.

En el capítulo 2 del presente documento se definió y construyó el espectro elástico e inelástico de acuerdo a la NEC con las condiciones del lugar en donde se establecerá la estructura en estudio. Es necesario ingresar aquellos datos al modelo en cuestión con el objetivo de analizar el comportamiento de los elementos estructurales ante un evento sísmico. Para ello se debe recurrir a la pestaña *Define*, luego *Functions*, opción *Response spectrum*, se despliega la ventana que se ilustra en la parte inferior y en el apartado que indica escoger tipo de función para añadir se buscará la opción *From file*, de donde se tendrá que subir el espectro calculado en el capítulo 2 en formato txt.

Response Spectra	Chaose Function Type to Add
espectro ale ESPECTRO GYE	ASCE7-10 V
LA VISTA C-15	Click to:
	Add New Function
	Modify/Show Spectrum
	Delete Spectrum

Figura 3.28 Definición de la función de espectro de respuesta Fuente: Etabs 2015 versión 15.2.0.

Posteriormente se desplegará un gráfico de % de aceleración de gravedad "*Sa*" vs. Periodo T y tabulados se encuentran los valores que se requirieron para llegar a tal función. Otra opción que ya se encuentra disponible en la versión 15.2 de Etabs consiste en buscar la norma ecuatoriana de la construcción 2015 dentro de los códigos preestablecidos del programa y comenzar a anotar los parámetros que se necesitan para llegar al espectro de diseño definido en el capítulo 2, el programa automáticamente arrojará los valores tabulados y graficará el espectro de respuesta inelástico pues se debe definir el factor de respuesta sísmica "*R*" al momento de ingresar los valores bajo esta modalidad.

Figura 3.29 Espectro de respuesta inelástico para Guayaquil Fuente: Etabs 2015 versión 15.2.0.

3.2.2. Asignación de cargas impuestas – Carga muerta y carga viva

La estructura debe ser diseñada para resistir las posibles combinaciones de carga y fuerzas que actúan en ella. Se considerarán las cargas y combinaciones dadas por la Norma Ecuatoriana de la Construcción 2011. Las combinaciones de carga se harán de acuerdo al método de Diseño por Resistencia.

Las cargas gravitacionales consideradas para el análisis son la carga muerta propia del peso de la estructura de acero, y la carga viva considerando el constante paso de personas, se supuso un peso de 480 kg/m2. Para el cálculo de la carga muerta de la estructura, se considera:

Tabla XVI Cargas muertas considera	das para el análisis.
Descripción	Valor (Kg/m2)
Peso propio de la Estructura	Calculado automático por el programa
Peso del Sistema Steeldeck	Definido por autores. Calculado por el programa
Peso de recubrimiento de piso	60
Peso de las instalaciones y cielo raso	30
Peso de mampostería (tabiques divisorios)	150
Total	240
Fuente: Autores	

Se tomará un valor de carga muerta sobreimpuesta de 240 Kg/m2. La carga ambiental considerada es la carga sísmica calculada mediante el espectro generado por el sismo de diseño descrito en el Capítulo 2.

En cuanto al proceso de modelado, ahora se va a proceder a definir cada uno de los patrones de carga, para ello se dirige a la pestaña *Define > Load patterns* y se despliega la siguiente ventana la cual toma en cuenta los parámetros Carga muerta, carga viva y carga muerta sobreimpuesta.

Figura 3.30 Definición de patrones de carga Fuente: Etabs 2015 versión 15.2.0. Como se observa en la figura 3.30 Sólo a la carga muerta se le considera un factor igual a uno, con el fin de que el programa al momento del cálculo tome en cuenta el peso propio de los elementos estructurales definidos anteriormente. Al añadir los demás casos de carga se debe corroborar que no tenga factor diferente de cero.

ad Cases			Click to:
Load Case Name	Load Case Type		Add New Case
DEAD	Linear Static		Add Copy of Case
LIVE	Linear Static		Modify/Show Case
DEADSUPER	Linear Static		Delete Case
SPCX	Response Spectrum	*	
SPCY	Response Spectrum		Show Load Case Tree
EX	Response Spectrum	*	
EY	Response Spectrum		
LIVEL	Linear Static		OK

Figura 3.31 Definición de casos de carga Fuente: Etabs 2015 versión 15.2.0.

En la pestaña *Define > Load cases* se pueden diferenciar los casos de carga de acuerdo al análisis que se vaya a establecer, como es regular se van a diferenciar carga muerta, carga viva y carga muerta sobreimpuesta cuyo tipo de carga se definirá como Linear static. Por otro lado, para SPCx – SPCy se producirá en el modelo una carga ocasionada por el espectro de diseño que fue ingresado anteriormente, por ello se define el tipo como Response Spectrum.

Load Case Mallie		SPCX		Design
Load Case Type		Response Spectru	um v	Notes
Exclude Objects in this G	iroup	Not Applicable		
Mass Source		Previous (MsSrc1)	
ads Applied				
Load Type	Load Name	Function	Scale Factor	0
Acceleration	U1	espectro ale	3685	Add
her Parameters				
her Parameters				
her Parameters Modal Load Case		Modal	~	
her Parameters Modal Load Case Modal Combination Meth	od	Modal SRSS	~	
her Parameters Modal Load Case Modal Combination Meth	iod Response	Modal SRSS Rigid Frequency, f1	~ ~]
her Parameters Modal Load Case Modal Combination Meth	iod Response	Modal SRSS Rigid Frequency, f1 Rigid Frequency, f2	×	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F	iod Response	Modal SRSS Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~ ~	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati	iod Response ion, td	Modal SRSS Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type	~ ~ 	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination	iod Response ion, td Type	Modal SRSS Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS	~ ~ ~	
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination T Absolute Direction	nod Response ion, td Type ial Combination Scale	Modal SRSS Rigid Frequency, f1 Rigid Frequency, f2 Petodic + Rigid Type SRSS Factor		
her Parameters Modal Load Case Modal Combination Meth Include Rigid F Earthquake Durati Directional Combination Absolute Direction Modal Damping	nod Response ion, td Type ial Combination Scale Constant at 0,05	Modal SRSS Rigid Frequency, f1 Rigid Frequency, f2 Periodic + Rigid Type SRSS Factor		

Figura 3.32 Definición de casos de carga Fuente: Etabs 2015 versión 15.2.0.

En la figura 3.32 se observa la ventana que se despliega al añadir un nuevo caso de carga, en el cual se debe detallar el nombre, tipo y la carga que va a ser utilizada. En este caso para SPCx, se puede notar que el tipo de carga va a estar relacionada con las aceleraciones que corresponden al espectro ingresado en el modelo *"espectro ale"* en la dirección de X o U1. Un aspecto importante a considerar es el factor de escala con el cual se va a trabajar para este tipo de cargas, como se ingresó un espectro elástico se debe ubicar el factor necesario para que el análisis sea inelástico. Según la NEC para llevar de un espectro elástico a uno inelástico se debe utilizar la ecuación 6 del capítulo 2.

$$Ec. 6: \ Cs = Sa * \frac{I}{R * \emptyset p * \emptyset e}$$

Siendo I = 1.3, R=4.5, Øp y Øe =0.9.

Una vez definidos todos estos parámetros se procede a graficar cada uno de los pórticos que componen la torre metálica, para las vigas y columnas se dibujan elementos tipo frame, este se simboliza como una barra inclinada y se encuentra en la barra vertical izquierda.

3.2.3. Combinación para el diseño por resistencia última.

Según la NEC-SE-CG-Cargas Sísmicas, Las estructuras, componentes y cimentaciones, deberán ser diseñadas de tal manera que la resistencia de diseño iguale o exceda los efectos de las cargas incrementadas, de acuerdo a las siguientes combinaciones:

- 1.4D
- 1.2D + 1.6L + 0.5 (Lr ó S ó R)
- 1.2D + 1.6L (Lr ó S ó R) + (L ó 0.5W)
- 1.2D + 1.0W+ 1.0L+ 0.5 (Lr ó S ó R)
- 1.2D + 1.0E + 1.0L + 0.2S
- 0.9D + 1.0W
- 0.9D + 1.0E

Donde:

- D: Carga muerta
- L: Carga viva
- Lr: Carga viva de cubierta
- S: Carga por nieve
- R: Carga por Iluvia
- E: Carga por efectos del sismo
- W: Carga por efectos del viento

Los efectos más desfavorables, tanto de viento como de sismo, no necesitan ser considerados simultáneamente define también la Norma Ecuatoriana de la Construcción, por lo que en el análisis del modelo se considerará únicamente los efectos del sismo de diseño.

Una vez definidos los estados de carga se procede a realizar las combinaciones de las mismas según la NEC2015. Las cuales se han definido en el capítulo 3 del presente documento. Para ello en la pestaña *Define > Load combinations > Add new combo*.

ombinations	0	lick to:
COMB8 COMB9	^	Add New Combo
COMB10 COMB11		Add Copy of Combo
COMB12 COMB13		Modify/Show Combo
COMB14 COMB15 COMB16		Delete Combo
COMB17 COMB18 ENVE		Add Default Design Combos
SER EX SER EY SEDV		Convert Combos to Nonlinear Cases

Figura 3.33 Definición de combinaciones de carga Fuente: Etabs 2015 versión 15.2.0.

Se va a añadir una de las combinaciones de cargas según la NEC2015, en este caso se expondrá como ejemplo la combinación 15 que interactúa cargas muertas con las de respuesta sísmica en dirección X y Y. Sólo se añaden los casos de cargas con el factor de escala correspondiente.

	COMPTO	
Combination Type	Linear Add	~
Notes	Modify/Show N	lotes
Auto Combination	No	
DEAD	0,9	Add
Load Name	Scale Factor	A.1.1
DEADSUPER	0.9	
SPCX	0.3	Delete
SPCY	1	

Figura 3.34 Definición de combinación de cargas muertas y sísmicas Fuente: Etabs 2015 versión 15.2.0.

3.2.4. Asignación de brazos rígidos

El programa utilizado para el análisis permite especificar los factores de zona rígida en los elementos. Este es un factor que define el porcentaje de rigidez en las conexiones según su procedimiento ejecutado, en base a las conexiones sismo resistentes descritas anteriormente, se establece un factor en la opción *Assign - Automatic From Connectivity* y en el recuadro de *Rigid-Zone Factor* se coloca 0.85 especificando un valor de rigidez mayor al semirrígido.

Frame Assignment - End Length Offsets
End Offset Along Length
 Automatic from Connectivity
O Define Lengths
End-I mm
End-J mm
Rigid-zone factor 0.85
Frame Self Weight Option
O Auto
Weight Based on Full Length
O Weight Based on Clear Length
OK Close Apply

Figura 3.35 Cuadro de asignación de brazos rígidos Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

3.2.5. Asignación de diafragmas rígidos

Adicionalmente, el modelo permite al usuario establecer los diafragmas rígidos que supone que todos los puntos en un nivel dado tengan los mismos desplazamientos, haciendo que todo el piso se traslade uniformemente. Para ello en la pestaña *Define > Diaphragms > Add new diaphragm* y se crea un diafragma por cada uno de los niveles existentes en el modelo, ajustando cada diafragma como un elemento rígido, como se observa en la figura 3.

Diaphragms		Click to:
D1 D2	^	Add New Diaphragm
D3 D4		Modify/Show Diaphragm
D6 D7		Delete Diaphragm
D8 D9 PB	~	ОК
		Cancel

Rigidity	0.0.1011	

Figura 3.37 Creación de cada diafragma y ajuste de su rigidez Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Para asignar los diafragmas basta con seleccionar la planta de cualquier nivel del edificio, luego en la pestaña Assign > Joint > *Diaphragms* y se procede a aplicar el diafragma que le corresponde al piso del edificio en cuestión. Cabe recalcar que se trabajan con los nodos porque se quiere que el desplazamiento uniforme se dé a través de estos puntos.

Joint Assignment - Diaphragms
Diaphragm Assignments
From Shell Object
Disconnect
D2
D3 D4
D5
D6 D7
D8
PB
SUB
Modify/Show Definitions
OK Close Apply

Figura 3.38 Cuadro de asignación de diafragmas rígidos en cada nivel Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 3.39 Asignación del diafragma rígido Piso 2 Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Se puede observar en la figura 3.39 que una vez asignados los diafragmas, el programa determina el centro de masa correspondiente a ese piso, información que nos permite tener una idea de sobre qué lado está la mayor cantidad de masa. Finalmente, el modelo estructural queda definido de la siguiente manera.

Figura 3.40 Vista en planta y elevación nivel 4.39m **Fuente:** Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 3.41 Vista en planta y elevación nivel 7.63m **Fuente:** Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 3.42 Vista en planta y elevación nivel 10.87m **Fuente:** Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 3.43 Vista en planta y elevación nivel 13.72m **Fuente:** Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 3.44 Vista en planta y elevación nivel 16.60m **Fuente:** Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 3.45 Vista en planta y elevación nivel 19.30m Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 3.46 Vista en planta y elevación nivel 23.98m Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 3.47 Vista en planta y elevación nivel 27.73m Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 3.48 Vista en planta y elevación nivel 31.50m Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

3.3. Respuesta sísmica de la estructura. Fuerzas inducidas y desplazamientos relativos generados

Existen tres tipos de análisis para el modelo elaborado:

- Análisis de fuerzas laterales equivalentes (estático)
- Análisis dinámico espectral
- Análisis dinámico en el dominio del tiempo

El procedimiento escogido dependerá de la configuración estructural, tanto en planta como en elevación, el análisis estático se realiza para estructuras regulares mientras que los análisis dinámicos se realizan para estructuras irregulares.

Los efectos dinámicos del sismo de diseño se modelaron mediante un espectro de respuesta lo que permite incorporar al modelo efectos torsionales y de modos de vibración distintos al fundamental.

En base a lo anteriormente planteado escogido de la Norma Ecuatoriana de la Construcción en su Capítulo "Peligro Sísmico", se decidió ejecutar un análisis dinámico espectral de la estructura para comprobación de las derivas máximas permisibles.

3.3.1. Configuración de las opciones de análisis

Para el análisis de la estructura seleccionamos la opción *Analyze - Dinamyc Analysis* y definimos los parámetros dinámicos en *Set Dinamyc Parameters,* el número de modos dependerá del número de plantas de la estructura, se consideran tres modos de vibración por cada una de ellas, por lo que se obtiene para el sistema modelado 27 modos.

Al definir el tipo de análisis se escogió la opción *Ritz Vectors* recomendada para el análisis dinámico por los beneficios que presenta para la aceleración vertical, vibración de la máquina localizada, y el método no lineal adaptado para el análisis.

Antes de ejecutar el análisis, se deberá revisar el modelo por medio de la herramienta *Analyze – Check Model* con lo que se detallará algún error en el modelo en caso de que se presente y se deba corregir.

Length Tolerand	e for Checks		
Length Toler	ance for Checks	1	mr
Joint Checks			
🗹 Joints/Joi	nts within Tolerance		
Joints/Fra	mes within Tolerance		
Joints/Sh	ells within Tolerance		
Frame Checks			
🗸 Frame Ov	erlaps		
Frame Inte	ersections within Tolera	ance	
Frame Inte	ersections with Area Ed	iges	
Shell Checks			
Shell Ove	rlaps		
Other Checks			
Check Me	eshing for All Stories		
Check Lo	ading for All Stories		
Check for	Duplicate Self Mass		
Fix			
Trim or E	tend Frames and Move	e Joints to Fix Problems	
Joint Stor	y Assignment		
Check Selec	ted Objects Only		
	ted objects only		
	Select/Desel	ect All	

Figura 3.49 Cuadro de revisión de los elementos del modelo Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

3.3.2. Análisis de la estructura

Para el análisis de la estructura se selecciona la opción *Analyze - Run Analysis* y se muestra un cuadro de diálogo que describe algunas características del análisis. Al culminar se mostrará el modelo con sus deformaciones correspondientes a las cargas impuestas.

Ty Linear	pe	Status	Action	^	Due/De Net Due Cese
Linear					Ruh/Do Not Ruh Case
	Static	Finished	Run		Delete Results for Case
Linear	Static	Finished	Run		
R Linear	Static	Finished	Run		Run/Do Not Run All
Response	Spectrum	Finished	Run		Dalata All Daavilla
Response	Spectrum	Finished	Run		Delete All Results
Response	Spectrum	Finished	Run		
Response	Spectrum	Finished	Run	~	Show Load Case Tree
seconds	Dia	phragm Centers of Calculate Diaphra	Rigidity	f Rigidity	
e tables to Microsoft Acces	s or XML after r	un completes			
C:\Users\Usuario\Documents\C. VICTORIA\LA VISTA\LA VISTA\15A-10.mdb Run Now					
	ER Linear Response Response Response Response seconds	ER Linear Static Response Spectrum Response Spectrum Response Spectrum seconds Dia te tables to Microsoft Access or XML after r	ER Linear Static Finished Response Spectrum Finished Response Spectrum Finished Response Spectrum Finished Response Spectrum Finished Image: Spectrum Finished Image: Spectrum Finished Image: Spectrum Finished Image: Spectrum Spectrum Image: Spectrum <t< td=""><td>ER Linear Static Finished Run Response Spectrum Finished Run Response Spectrum Finished Run Response Spectrum Finished Run Response Spectrum Finished Run Image: Spectrum Calculate Diaphragm Centers of Rigidity Image: Spectrum Finished Run Image: Spectrum Spectrum Run I</td><td>ER Linear Static Finished Run Response Spectrum Finished Run V Finished Run V V V</td></t<>	ER Linear Static Finished Run Response Spectrum Finished Run Response Spectrum Finished Run Response Spectrum Finished Run Response Spectrum Finished Run Image: Spectrum Calculate Diaphragm Centers of Rigidity Image: Spectrum Finished Run Image: Spectrum Spectrum Run I	ER Linear Static Finished Run Response Spectrum Finished Run V Finished Run V V V

Figura 3.50 Cuadro de opción de casos de cargas para ejecutar el análisis Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

3.3.3. Resultados del análisis modal de la estructura

El análisis modal permite determinar las frecuencias naturales y modos de vibrar de la estructura durante vibración libre, con lo que se obtuvo el periodo de la estructura T= 0.844 segundos.

3.3.4. Verificación de las derivas de piso

Para la verificación de las derivas, se señalan dos tipos de derivas existentes, la deriva global que hace referencia al desplazamiento en el tope del edificio; el cual se extrae de la curva de capacidad, sobre la altura total del mismo, así:

$$\Delta_{Mi+1} = \frac{D_t}{H}$$

Donde:

Y_q : Deriva global del edificio

D_t: Desplazamiento en el tope del edificio

H: Altura total del edificio

Y la deriva de piso que representa los desplazamientos en cada piso, se obtiene de la relación entre el desplazamiento relativo de piso dividido para la altura de entre piso.

$$\Delta_E = \frac{d_t}{h}$$

Al respecto, la Norma Ecuatoriana de la Construcción en su Capítulo "Peligro Sísmico", señala los valores de derivas máximas de piso según el tipo de material por el que esté compuesto la misma:

Tabla XVII Valores de deriva de piso máximos, expresados como fracción de la altura de piso.

Estructuras de:	$\Delta_{\rm M}$ máxima (sin unidad)
Hormigón armado, estructuras metálicas y de madera	0.02
De mamposteria	0.01

Fuente: Obtenido de NEC_SE_DS, 2015

Es importante considerar la reducción de derivas permisibles por la presencia de irregularidades tanto en planta como en altura en la estructura, por lo que se calcula el coeficiente de regularidad en planta ϕ_P para cada piso del sistema estructural.

$$\phi_P = \phi_{PA} * \phi_{PB}$$

Donde:

Ø_P: Coeficiente de regularidad en planta

 ϕ_{PA} : Mínimo valor ϕ_{Pi} de cada piso i de la estructura en el caso de irregularidades tipo 1, 2 y/o 3

 ϕ_{PB} : Mínimo valor ϕ_{Pi} de cada piso i de la estructura en el caso de irregularidades tipo 4

Ø_{Pi}: Coeficiente de configuración en planta

Para la consideración de la irregularidad existente en la elevación, se calcula el coeficiente de regularidad en elevación ϕ_E a partir del análisis de las características de elevación de la estructura.

$$\phi_E = \phi_{EA} * \phi_{EB}$$

Donde:
ϕ_E : Coeficiente de regularidad en elevación.

 ϕ_{EA} : Mínimo valor ϕ_{Ei} de cada piso i de la estructura, en el caso de irregularidades tipo 1; ϕ_{Ei} en cada piso se calcula como el mínimo valor expresado por la tabla para la irregularidad tipo 1

 ϕ_{EB} : Mínimo valor ϕ_{Ei} de cada piso i de la estructura, en el caso de irregularidades tipo 1; ϕ_{Ei} en cada piso se calcula como el mínimo valor expresado por la tabla para la irregularidad tipo 2 y/o 3

 ϕ_{Ei} : Coeficiente de configuración en elevación.

Los valores ϕ_{Pi} y ϕ_{Ei} , se obtienen de las tablas 13 y 14 de la Norma Ecuatoriana de la Construcción en su Capítulo "Peligro Sísmico".

Tabla XVIII Coeficientes de irregularidad en planta.

Fuente: Obtenido de NEC_SE_DS, 2015

Tipo 1 - Piso flexible			
$\phi_{E}=0.9$ Bigidez K < 0.70 Bigidez K	▏▖┠╾╋╼╋╼┫		
$\frac{R_{igides} < 0.80(K_{b} + K_{\ell} + K_{\ell})}{R_{igides} < 0.80(K_{b} + K_{\ell} + K_{\ell})}$	▏▝┣╼╇╼╇┥		
3	U		
La estructura se considera irregular cuando la rigidez lateral de un piso es menor que el 70% de la rigidez lateral del piso			
superior o menor que el 80 % del promedio de la rigidez lateral	с		
de los tres pisos superiores.	в		
Tipo 2 - Distribución de masa	F		
$\phi_{ei}=0.9$ m > 1.50 m . ϕ	▕▕▕┝╋┿╋┥		
$m_{\rm p} > 1.50 m_{\rm c}$			
	D		
La estructura se considera irregular cuando la masa de cualquier			
advacentes con excepción del piso de cubierta que sea más			
liviano que el piso inferior.	В		
Tipo 3 - Irregularidad geométrica			
$\phi_{\text{EI}}=0.9$			
a > 1.3 b	E		
La estructura se considera irregular cuando la dimensión en	▏▔┣┿╇┿┫		
1 3 veces la misma dimensión en un piso advacente	С		
exceptuando el caso de los altillos de un solo piso.	в		
Nota: La descripción de estas irregularidades no faculta al calculista o dis	eñador a considerarlas como		
normales, por lo tanto la presencia de estas irregularidades requiere revisiones estructurales adicionales			
dae Paranteren ei paeu comboi ranneuro iocai à Piopai de la campación.			

Tabla XIX Coeficientes de irregularidad en elevación.

Fuente: Obtenido de NEC_SE_DS, 2015

Para cada uno de los pisos, se obtuvieron los valores ϕ_{Pi} y ϕ_{Ei} , igual a 0.9, con lo que se obtiene un valor de $\phi_E = 0.81$ y $\phi_P = 0.81$, el valor de la deriva máxima permisible sería igual a:

$$\Delta_{MAX} \leq \emptyset_E \ x \ \emptyset_P \ x \ \Delta_E$$

$$\Delta_{MAX} \le 0.013$$

3.3.4.1 Deriva máxima – sismo en la dirección X

Con ayuda del Software Etabs versión 2015.2.0, se obtiene la deriva de piso máxima en la estructura por medio del menú *Display – Show Story Response Plots,* seleccionando la opción *Maximum Story Drifts*.

En la opción Case/Combo se selecciona la opción *SPCX* para ejecutar el sismo definido en la dirección X.

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

La línea de coloración azul hace referencia a las derivas producidas en el eje X y la roja a las derivas producidas en el eje Y, los datos correspondientes son:

1		Dest	Deview		
Planta	Flevación	Deriva	Deriva	Deriva	Estado
Fianta	Lievacion	1130	1130	Deriva	Estado
	m	X	Y	Maxima	
P9	31.5	0.004	0.004	0.013	OK
P8	27.73	0.005	0.004	0.013	OK
P7	23.98	0.004	0.003	0.013	OK
P6	19.3	0.004	0.002	0.013	OK
P5	16.6	0.004	0.002	0.013	OK
P4	13.72	0.004	0.002	0.013	OK
P3	10.87	0.004	0.002	0.013	OK
P2	7.63	0.003	0.002	0.013	OK
P1	4.39	0.001	0.002	0.013	OK

Tabla XX Valor de derivas para cada planta, producidas por el sismo en la dirección X.

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Se observa la deriva máxima producida en la planta 8 del sistema y su valor no sobrepasa al permisible establecido en la NEC2015.

3.3.4.2 Deriva máxima – sismo en la dirección Y

De igual manera, se obtienen las derivas de cada planta producidas por el sismo en la dirección Y, En la opción Case/Combo se selecciona la opción *SPSY* para ejecutar el sismo definido en la dirección Y.

Figura 3.52 Deriva Máxima por Sismo en la dirección Y Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Planta	Elevación	Deriva Piso	Deriva Piso	Deriva	Estado
	m	Х	Y	Máxima	
P9	31.5	0.001	0.006	0.013	OK
P8	27.73	0.002	0.007	0.013	OK
P7	23.98	0.001	0.001	0.013	OK
P6	19.3	0.001	0.001	0.013	OK
P5	16.6	0.002	0.002	0.013	OK
P4	13.72	0.002	0.002	0.013	OK
P3	10.87	0.001	0.001	0.013	OK
P2	7.63	0.001	0.001	0.013	OK
P1	4.39	0.001	0.001	0.013	OK

Tabla XXI Valor de derivas para cada planta, producidas por el sismo en la dirección Y.

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Se observa la deriva máxima producida en la planta 8 y de igual manera, su valor no excede al permisible establecido en la NEC2015.

CAPÍTULO 4

4. PLANTEAMIENTO DE ALTERNATIVAS DE PROTECCIÓN SÍSMICA PARA LA ESTRUCTURA

El planteamiento de las alternativas se presentará en base a los resultados obtenidos del Capítulo 3, en el que se analizó el modelo de la estructura, destacando los resultados del análisis modal.

Se plantearán un sistema de aislamiento sísmico basal y dos métodos de disipación pasiva de energía, para los cuales, su instalación resulta adecuada en la estructura en cuestión. Se presenta el funcionamiento de cada uno de los métodos, modelación en el programa ETABS v15.2 y los resultados que proporcionan dichos elementos.

4.1. Método de protección sísmica: muros de corte de hormigón armado.

El uso de muros estructurales responde al diseño basado en los desplazamientos, que es función del desempeño (o nivel de daño) deseado en la estructura y proporciona la resistencia lateral requerida para alcanzar ese desempeño. (NEC, 2015). El DBD constituye una alternativa al DBF, método ejecutado por el diseñador para definición de los elementos y conexiones del sistema, por lo que se utilizará el DBD como método de diseño para protección

sísmica de la estructura, aun cuando la estructura presente poca regularidad tanto en planta como en elevación.

El ACI define como muro de cortante a un muro, de carga o no de carga, diseñado para resistir fuerzas laterales que actúan en el plano del muro, estos elementos estructurales se desarrollan longitudinalmente en la altura total de la estructura siguiendo la analogía de una viga en voladizo, soportan un gran porcentaje de las cargas laterales originadas por eventos sísmicos, así como la carga de su peso propio y de la edificación en sí, proporcionando una gran resistencia y rigidez lateral ante movimientos laterales, lo que genera una disipación de energía estable, reduciendo la posibilidad de deformaciones excesivas bajo sismos. (Pazmiño Lincago, 2015). (American Concrete Institute, 2015)

La correcta ubicación de los muros estructurales será determinada en función a la ubicación del centro de masa, de manera que se minimice la excentricidad del centro de rigidez con respecto al centro de masa, de manera que se optimice la resistencia sísmica del sistema. La Norma Ecuatoriana de la Construcción define como una adecuada disposición de los muros estructurales de manera que se encuentren lo más simétricamente posible, hacia la periferia y que mantengan su longitud en planta en todo lo alto de la estructura. Los muros de corte están sujetos a fuerzas axiales, de traslación y de torsión ... (Paulay & Priestley, 1992)

Pazmiño, en su proyecto previo a la obtención del título de ingeniero civil, "Diseño Comparativo para Edificios en Estructura de Acero con Diversos tipos de Arriotramiento Lateral: Caso Muros de Corte", resume las ventajas principales de tener una configuración estructural con muros de corte como:

- Aumento de la rigidez lateral de los pórticos con muros
- Reduce la deformación producida por cargas laterales (derivas de piso) y reduce los daños de los elementos estructurales y no estructurales.
- Absorbe casi en la totalidad las cargas sísmicas debido al incremento de capacidad de disipación de energía de la estructura.
- Modifica la distribución del cortante en las columnas
- Crear zonas de seguridad en el edificio durante eventos sísmicos.

4.2. Método de protección sísmica: aisladores sísmico base.

En la siguiente sección, se realizará el estudio de factibilidad de la implementación de aisladores sísmicos de base a la estructura, respaldado por un estudio estructural el cual muestre la existencia de bondades en el diseño justificando la implementación o no de este nuevo sistema.

El tipo de aislador que se quiere diseñar consiste en el denominado HDRB, el cual es un soporte elastomérico de alto amortiguamiento formado por capas de caucho y láminas de acero ubicadas alternadamente de tal forma que proporcionen una rigidez vertical mucho mayor que la rigidez horizontal, la cual además debe ser controlada por el módulo de cortante del elastómero. Una manera de incrementar el amortiguamiento del aislador consiste en la adición de aceites y resinas en las capas del elastómero.

Figura 4.1 Aislador tipo HDRB **Fuente:** Seismic isolation in buildings, Saiful Islam & all. Research paper.

4.2.1. Cálculo del período de vibración aproximado de la estructura (T)

Ec.
$$T = Ct x hn^{\alpha}$$

La Norma Ecuatoriana de la Construcción NEC-2015 estipula que para determinar el periodo de la estructura se debe usar la ecuación, donde Ct es un coeficiente que depende del tipo de edificio, hn es la altura máxima de la edificación medida desde la base (en metros) y para cada tipo sistema asociado a una estructura metálica establece coeficientes fijos, como se observa en la tabla inferior.

Tabla XXII Parámetros	para el cálculo de	el periodo de la estructura
-----------------------	--------------------	-----------------------------

Tipo de estructura	Ct	α
Estructuras de acero		
Sin arriostramientos	0.072	0.8
Con arriostramientos	0.073	0.75

Fuente: NEC SE-DS, 2015.

Para el primer caso: sin arriostramientos.

 $T = 0,072 \ x \ (31,5)^{0,8}$

 $T = 1,1375 \ seg.$

Para el segundo caso: con arriostramientos.

 $T = 0,073 x (31,5)^{0,75}$

 $T = 0,9706 \, seg.$

En ambos casos se comprueba que el periodo de la estructura es mayor que el determinado en el espectro elástico Tc = 0,698 segundos.

4.2.2. Diseño del aislador elastomérico de alto amortiguamiento HDBR

Para el diseño del sistema de aislamiento preciso, la norma UBC 97 en su capítulo 16 indica que cualquier sistema de aislamiento que cumpla con los requerimientos de desplazamiento puede ser considerado como aceptable. Cabe destacar que la filosofía del código no estipula reducción de costos si no el control del daño de la estructura durante un sismo.

Se va a realizar el procedimiento estipulado en la norma chilena Nch 2745-2003, la cual se apoya a su vez en el método establecido en la norma ASCE 7-10. Cabe destacar que la norma ecuatoriana carece de un proceso de diseño de un sistema de aislación, mientras que Chile es un país que ha desarrollado mejores aptitudes en cuanto a temas relacionados con la protección sismo resistente de estructuras, debido a su localidad en la costa del Pacífico y al historial de eventos sísmicos a los cuales ha estado sometido.

Se tomará como referencia criterios de ingenieros especializados en este tema de aislación sísmica y lo investigado en las normas vigentes para establecer las siguientes recomendaciones que debe cumplir el diseño de los aisladores.

1.- Proporcionar la resistencia suficiente para los movimientos sísmicos menores y moderados, evitando el daño de elementos estructurales, no estructurales, además del contenido de la edificación.

2.- Resistir los movimientos sísmicos severos sin que el sistema de aislamiento colapse, evitando daños significativos en la estructura.

3.- Debe poseer una gran flexibilidad horizontal con el objetivo de alargar el periodo fundamental de vibración de la estructura y que este experimente las menores aceleraciones espectrales posibles. Además de soportar las deformaciones por corte propias de las cargas sísmicas.

4.- Del mismo modo debe poseer una rigidez vertical para resistir las cargas de servicio a las que estará sometida la estructura durante su tiempo de vida útil. Al tener el amortiguamiento indicado evitará deformaciones excesivas en el sistema de aislación.

5.- Deberá llevarse un proceso de control de calidad que permita inspeccionar el buen funcionamiento de los aisladores, más aún luego de un sismo y sus posibles réplicas. De esta manera se comprobará la efectividad del sistema y de ser necesario deberá de proveer algún medio que permita la sustitución de los aisladores.

Existen empresas que se dedican a la elaboración de este tipo de aisladores, para lo cual ya disponen de tablas comerciales con las características que poseen cada uno de estos dispositivos, cumpliendo altos parámetros de calidad y seguridad internacional.

Tabla AAIII Información de base correspondiente a la estructura analizada				
DATOS DE ENTRADA	VALOR	UNIDADES		
Número de aisladores que usará el sistema N	10	aisladores		
Peso sísmico del edificio (D+0.25L) W	514.37	TON		
Periodo objetivo deseado Td	2	segundos		
Carga máxima bajo el cual actúa el aislador Pmax 201.61 TON				
Fuente: Autores				

Tabla XXIII Información de base correspondiente a la estructura analizada

Los datos de entrada corresponden a los parámetros relacionados con la edificación, el número de aisladores se determina por el área de la cimentación existente y la cantidad de elementos verticales en contacto con la subestructura. Por otro lado, los valores de peso sísmico y carga máxima se obtienen a partir del modelo realizado en el programa ETABS.

DATOS PARTICULARES HDR		VALOR	UNIDADES
Deformación de corte directa máxima	γs	150	%
Deformación de corte admisible	Ymax	250	%
Amortiguamiento efectivo del sistema	β	20	%
Conexión con sistema de pernos		Sí	-
Esfuerzo admisible en compresión	σас	90	Kg/cm2

Tabla XXIV Datos particulares para el diseño de aisladores

Varios catálogos y estudios realizados para un sistema de aislación sísmica estipulan los valores de la tabla XXV como requisito previo para el diseño del aislador para la estructura en cuestión.

4.2.2.1 Procedimiento de diseño

Paso 1.- Cálculo de los desplazamientos de diseño y desplazamientos máximos respecto a las condiciones geográficas del proyecto.

Valor de la aceleración	Zona sísmica de la NEC- 2015	Zona sísmica NCh433
0.2 g	I	1
0.3 g	III	2
<mark>0.4 g</mark>	V	<mark>3</mark>
Fuente: Autores		

Tabla XXV Comparación entre norma chilena	a y ecuatoriana para tipo de suelo
---	------------------------------------

Al establecer una comparación entre las normas ecuatoriana y chilena referente a la definición de zonas sísmicas se puede destacar que el tipo de suelo es III según la norma chilena, así como la zona sísmica es 3. Posteriormente se definirán los coeficientes involucrados para la determinación de los desplazamientos.

Tabla XXVI Determinación de coenciente de desplazamiento				
COEFICIENTE SÍSMICO DE DESPLAZAMIENTO				
TIPO DE SUELO	Cd (mm)	Cm (mm)		
	200 Z	200 MM Z		
	300 Z	300 MM Z		
	<mark>330 Z</mark>	<mark>330 MM Z</mark>		

Tabla XXVI Determinación de coeficiente de desplazamiento

Tabla XXVII Determinación de factor Z			
FACTOR QUE DE	PENDE DE LA		
ZONIFICACIÓN NCh 433			
ZONA SÍSMICA Z			
1 0.75			
2 1.00			
<mark>3</mark> 1.25			

Fuente: Autores

Tabla XXVIII Determinación de factor MM

FACTOR DE AMPLIFICACIÓN			
PARA EL MÁXIMO SISMO			
POSIBLE			
ZONA SÍSMICA	MM		
1 1.20			
2	1.20		
<mark>3</mark>	<mark>1.20</mark>		

Fuente: Autores

Tabla XXIX Determinación de factores Bd y Bm

Amortiguamiento efectivo BD o BM como porcentaje del amortiguamiento critico	Factor Bp o BM
≤2	0.8
5	1.0
10	1.2
20	1.5
30	1.7
40	1.9
≥50	2.0

Fuente: NCh 2745 - 2003

Ecuación
$$Dd = \frac{cd}{\beta d}$$

Ecuación
$$Dm = \frac{Cm}{\beta m}$$

Donde Dd y Dm son desplazamiento de diseño y desplazamiento máximo respectivamente, los factores beta corresponden a coeficientes de amortiguamiento

efectivo, el cual se consideró como 20% del amortiguamiento crítico, mientras que los factores C hacen referencia a coeficientes de desplazamiento.

Una vez determinados todos los parámetros se procede a calcular:

$$Dd = \frac{330 * 1.25}{1.5} = 275 \ mm$$

$$Dm = \frac{330 * 1.2 * 1.25}{1.5} = 330 \, mm$$

Tanto la norma chilena como el ASCE 7 -10 indican que los desplazamientos totales no deben exceder el 10% de los calculados, esto se realiza además para asegurarse que el sistema controlará problemas de torsión.

> Dtd = 1.1 * 275 = 302.5 mmDtm = 1.1 * 330 = 363 mm

Paso 2.- Cálculo de la rigidez horizontal total y la correspondiente a cada aislador.

Ecuación
$$Khtot = \frac{4\pi^2 * W}{Td^2 * g}$$

Ecuación
$$Kh = \frac{Khtot}{N}$$

Donde Khtot es la rigidez horizontal total del sistema de aisladores, Kh corresponde a la rigidez de un aislador y N es la cantidad de aisladores que se usarán en este proyecto, el resto de parámetros definidos se los tomará según lo expuesto en la tabla XXIV.

$$Khtot = \frac{4\pi^2 * 514.37T}{2^2 * 9.81} = 517.49 \, Ton/m$$

Se puede aproximar inicialmente un valor individual idéntico para cada aislador.

$$Kh = \frac{517.49}{10} = 51.749 \ Ton/m$$

Paso 3.- Determinación del área del aislador en base a la carga máxima actuante.

Con la carga Pmax obtenida mediante el programa ETABS y el esfuerzo admisible en compresión del neopreno se procede a determinar el área requerida y posteriormente el diámetro del aislador.

Ecuación
$$A = \frac{Pmax}{\sigma ac}$$

Reemplazando se tiene $A = \frac{201.61 T}{0.09 T/m^2} = 2240.11 cm^2$

Ecuación
$$A = \frac{\pi D e^2}{4}$$

Paso 4.- Determinación de la altura necesaria del elastómero.

Se requiere indicar el espesor del elastómero que conformará gran parte de la altura final del aislador. Para ello mediante la ecuación se puede obtener tal altura.

Ecuación
$$Hr = \frac{Dd}{\gamma s}$$

Donde Dd es el desplazamiento de diseño determinado en el paso 1, ¥s es la deformación por corte obtenido en catálogos.

$$Hr = \frac{27.5cm}{1.5} = 18.33 \ cm$$

Paso 5.- Determinación del módulo de corte del elastómero.

Ecuación
$$G = \frac{Kh x Hr}{A}$$

Se obtiene
$$G = \frac{51.74 \frac{Ton}{m} \times 0.18m}{0.224 m2} = 42.35 T/m$$

Paso 6.- Determinación del espesor de capa del elastómero.

Mediante los catálogos revisados y recomendaciones de investigaciones realizadas, se estipula un valor de 10mm como espesor de cada capa del elastómero. Es decir, tr = 10 mm.

Paso 7.- Determinación del factor de forma.

El Factor de forma debe asegurar que la rigidez vertical sea la adecuada. Se calcula con la siguiente fórmula, tomando como De aquel diámetro obtenido en el paso 3.

Ecuación
$$S = \frac{De}{4tr}$$

Se obtiene
$$S = \frac{53.41cm}{4x1cm} = 13.35$$

Se cumple que
$$S \ge 10$$
.

Paso 8.- Determinación del número de capas de elastómero.

Para poder determinar la altura total del aislador se requiere saber qué parte de aquella altura corresponde al elastómero, para ello se calcula la siguiente expresión.

Ecuación
$$n = \frac{Hr}{tr}$$

Se obtiene
$$n = \frac{18.33cm}{1cm} = 18.33$$

Paso 9.- Determinación del espesor de placas de acero y determinación de esfuerzos.

Mediante los catálogos revisados y recomendaciones de investigaciones realizadas, se estipula un valor de 3mm como espesor de cada capa de las láminas de acero. Es decir, ts = 3 mm.

Posteriormente se debe comprobar que el esfuerzo de trabajo de las placas de acero sea menor a 1.5 veces el esfuerzo admisible, según lo estipula la norma chilena.

Ecuación
$$\sigma s = 1.5 \frac{tr}{ts} \sigma ac$$

Se obtiene $\sigma s = 1.5 \frac{1 cm}{0.3 cm} * \frac{90 kg}{cm2} = 450 \ kg/cm2$

Para determinar el esfuerzo admisible se recurre a la ecuación

Ecuación $\sigma adm = 0.75 fy$ donde fy esfuerzo de fluencia del acero

$$\sigma adm = 0.75 * 4200 = 3150 \ kg/cm^2$$

Por lo tanto, se comprueba que $\sigma_s \le 1.5 \sigma_{adm}$.

Paso 10.- Cálculo de la altura total del aislador.

Siendo Hr la altura de las capas del elastómero, son 18 capas de 1cm, por lo tanto, Hr = 18cm. Ht consiste en la altura del aislador (placas de elastómero y acero), por lo tanto:

Ecuación
$$Ht = Hr + (n-1)ts$$

Se obtiene
$$Ht = 18cm + (18 - 1)0.3cm = 23.1 cm$$

Se asume un espesor de las placas de anclaje de 2.5 cm, las cuales van a ubicarse sobre y bajo el aislador. Por lo tanto, la altura final del aislador será:

$$H = 23.1 \text{ cm} + 2x2.5 \text{ cm} = 28.1 \text{ cm}$$

Paso 11.- Cálculo de la rigidez vertical del aislador.

Ecuación
$$Kv = \frac{Ec*A}{Hr}$$

Donde Ec (Módulo de compresión del aislador) viene expresado por la ecuación

Ecuación
$$Ec = \left[\frac{1}{6GS^2} + \frac{4}{3K}\right]^{-1}$$

Donde G es el módulo de corte, S el factor de forma, cuyos valores fueron calculados en pasos previos. Mientras que K corresponde al módulo de compresibilidad del elastómero, el cual se aproxima a 2000MPa.

Haciendo los cálculos pertinentes se determina que Ec = 4636.21 Kg/cm2.

Finalmente se obtiene $Kv = \frac{4636.21*2240.11}{18} = 432989.48 \text{ Kg/cm}$

Paso 12.- Comprobación del periodo de diseño.

Ecuación
$$T = 2\pi * \sqrt{\frac{W}{Kh*g}}$$

Se obtiene
$$T = 2\pi * \sqrt{\frac{514.37 T}{517.49 \frac{T}{m} * \frac{9.81m}{s2}}} = 2 \text{ seg.}$$

Por lo tanto, se confirma que el periodo de diseño de la estructura es igual al periodo deseado.

Paso 13.- Cálculo de la deformación angular máxima.

Se requiere saber la deformación angular máxima el cual es la suma de las deformaciones por corte, compresión y flexión, siendo este último despreciable comparado a los otros tipos de deformaciones.

Ecuación
$$\gamma \max = \gamma s + \gamma c + \gamma b = \gamma s + \gamma c$$

Se tiene la ecuación que indica que $\gamma s = \frac{Dm}{Hr} = \frac{330mm}{180mm} = 1.83$

La ecuación muestra que $\gamma c = 6 * S * \varepsilon c$ donde S es el factor de forma

Mientras que $\varepsilon c = \frac{\frac{Pmax}{A}}{Eo(1+2kS^2)}$ donde Eo es un factor dado por el fabricante cuyo valor generalmente rodea los 35 kg/cm2, mientras que k es un valor comprendido entre 0.7 y 1.

$$\varepsilon c = \frac{\frac{201610 \, kgf}{2240.11 \, cm2}}{35(1+2*0.7*13.35^2)} = 0.010$$

Se obtiene que $\gamma c = 6 * 13.35 * 0.010 = 0.822$

Finalmente, la deformación máxima γ max = 2.655

Valor que debe ser menor que el Ymáx propuesto.

Ecuación
$$\gamma \max prop = \frac{0.85\varepsilon b}{FS}$$

Donde ϵ_b generalmente se considera igual a 5.5 y el Factor de Seguridad mayor o igual que 1.5, resultando en γ max prop = 3.117

Por lo tanto, se comprueba que Ymáx es menor al Ymáx propuesto.

Paso 14.- Verificación al pandeo.

Luego de haber hecho las verificaciones de las propiedades del aislador, es necesario la verificación al pandeo puesto que, bajo las combinaciones de corte y

compresión, se puede producir pandeo por flexión y existiría una inexactitud con la ecuación de la rigidez horizontal. Siendo As el área de corte efectiva, Ps la rigidez de corte efectiva, I la inercia del aislador, Eleff la rigidez a la inclinación, Pe la carga de alabeo para una columna sin deformación y Pcrit la carga crítica capaz de provocar el pandeo, se tienen las siguientes ecuaciones.

Ecuación $As = A \frac{Ht}{tr} = 51746.56cm2$

Ecuación $Ps = G * As = 42.35 \frac{T}{m^2} * 5.17m^2 = 219.15 Ton$

Ecuación $I = \frac{\pi}{4} * \frac{\phi s^4}{2}$ siendo $\Phi s = 53.41$ cm, entonces I = 399327.54 cm4

Ecuación $Eleff = \frac{1}{3}Ec * I = \frac{1}{3} * \frac{4636.21kg}{cm^2} * I = 463114415.4 kg * cm^2$

Ecuación
$$Pe = \frac{\pi^2 * EI \, eff}{Ht^2} = \frac{\pi^2 * EI \, eff}{23.1^2} = 8565723.874 \, Kgf$$

Ecuación $Pcr = \frac{Ps}{2} * \left[\sqrt{1 + 4\frac{Pe}{Ps}} - 1 \right] = 1264.93 Ton$

Finalmente se debe comprobar que la razón entre la carga crítica de pandeo y la carga máxima sea mayor o igual a 2, para evitar que los elementos sufran pandeo.

$$\frac{Pcrit}{Pmax} \ge 2$$

Se cumple que 6.274 es mayor que 2, por lo tanto, no se tendrán problemas de pandeo con el diseño.

CUADRO DE RESUI	CUADRO DE RESUMEN						
Características HDRB	Unidades	cantidad					
Número de aisladores	U	10					
Altura total aislador "H"	cm	28,1					
Diámetro elastómero "Dg"	cm	55					
Altura total del elastómero	cm	18					
Número de capas de elastómero	U	18					
Espesor de cada capa de elastómero	cm	1					
CUADRO DE RESUMEN							
Características HDRB	Unidades	cantidad					
Características HDRB Diámetro láminas de acero	Unidades cm	cantidad 54					
Características HDRB Diámetro láminas de acero Altura total láminas de acero	Unidades cm cm	cantidad 54 5,1					
Características HDRB Diámetro láminas de acero Altura total láminas de acero Número de láminas de acero	Unidades cm cm U	cantidad 54 5,1 17					
Características HDRB Diámetro láminas de acero Altura total láminas de acero Número de láminas de acero Espesor de láminas de acero	Unidades cm cm U cm	cantidad 54 5,1 17 0,3					
Características HDRB Diámetro láminas de acero Altura total láminas de acero Número de láminas de acero Espesor de láminas de acero Espesor de placa de anclaje	Unidades cm cm U cm cm	cantidad 54 5,1 17 0,3 2,5					
Características HDRB Diámetro láminas de acero Altura total láminas de acero Número de láminas de acero Espesor de láminas de acero Espesor de placa de anclaje Longitud placa de anclaje "Z"	Unidades cm cm U cm cm cm	cantidad 54 5,1 17 0,3 2,5 65					
Características HDRB Diámetro láminas de acero Altura total láminas de acero Número de láminas de acero Espesor de láminas de acero Espesor de placa de anclaje Longitud placa de anclaje "Z" Módulo de rigidez a corte	Unidades cm cm U cm cm cm cm T/m2	cantidad 54 5,1 0,3 2,5 65 42,35					
Características HDRB Diámetro láminas de acero Altura total láminas de acero Número de láminas de acero Espesor de láminas de acero Espesor de placa de anclaje Longitud placa de anclaje "Z" Módulo de rigidez a corte Rigidez horizontal	Unidades cm Cm U cm cm cm T/m2 T/m	cantidad 54 5,1 17 0,3 2,5 65 42,35 51,75					

Tabla XXX Cuadro de resumen para aislador tipo HDRB

Figura 4.2 Aislador elastomérico comercial Fuente: Catálogo de aisladores SI, empresa FIP.

4.2.3. Proceso de modelado del aislador elastomérico en ETABS

Para poder ingresar al programa a diseñar este tipo de aislamientos de base, se requieren primero unos datos de entrada con los cuales se hará la simulación de que la estructura estará apoyada sobre este tipo de mecanismos. Con los datos obtenidos en la sección anterior se procederá a calcular nuevos parámetros para el aislador.

Paso 1.- Desplazamiento de fluencia del aislador

Ecuación Dy = 0.1tr = 0.1 * (18 * 10mm) = 18mm

Paso 2.- Energías disipadas por el aislador.

Ecuación $Wd = 2\pi * Keff * Dd^2 * \beta = 2\pi * 517.5 * 0.275^2 * 0.2 = 49.1 T - m$

Paso 3.- Fuerza de deformación nula de los aisladores.

Ecuación $Q = \frac{Wd}{4(Dd-Dy)} = \frac{49.1}{4(0.275-0.018)} = 47.84$ Ton

Paso 4.- Rigidez post fluencia de los aisladores.

Ecuación $k2 = keff - \frac{Q}{Dd} = 517.5 - \frac{47.84}{0.275} = 343.5 Ton/m$

Paso 5.- Rigidez inicial de los aisladores.

Ecuación $k1 = \frac{Q}{Dy} + k2 = 343.5 + \frac{47.84}{0.018} = 3001.29 Ton/m$

Paso 6.- Fuerza de fluencia de los aisladores.

Ecuación Fy = Q + K2 * Dy = 47.84 * 343.5 * 0.018 = 54.023 Ton

Paso 7.- Frecuencia angular.

Ecuación $\omega = \frac{2\pi}{T} = 3.1415 \ seg$

Paso 8.- Amortiguamiento efectivo de los aisladores.

$$C = \frac{Wd}{\pi * Dd^2 * \omega} = \frac{49.1}{\pi * 0.275^2 * 3.1415} = 65.88 \, Ton * seg/m$$

El programa ETABS posee la capacidad de modelar una edificación con aislamiento basal ya que permite la liberación automática de la tensión en aisladores o cualquier tipo de dispositivos a usarse.

El principal mecanismo de disipación de energía del elastómero es histerético, es decir, la curva fuerza – deflexión forma una histéresis no lineal, pero existe en el código UBC 97 un procedimiento que permite convertir el área bajo la curva de la histéresis a una relación equivalente de amortiguamiento útil para el análisis lineal equivalente.

En el programa ETABS V15.2 con el modelo de la estructura a analizar, se da clic en la pestaña *Assign > Link* y se crea una nueva propiedad de enlace. Se selecciona la opción de Rubber Isolator la cual simulará la existencia del aislador diseñado en el modelo estructural.

Se puede observar cómo quedan habilitadas ciertas propiedades en sus direcciones y se proceden a modificar las direcciones U1 y U2 con los parámetros calculados anteriormente.

Link Prop	erty Nam	e HD	RB	Link Type		Rubb	er Isolator	~
Link Property Notes Modify/Show Notes		P-Delta Parameters		Modify/Show				
Total Mass a	ind Weig	ht						
Mass		0	kg	Rotati	onal Inert	ia 1	0	tonf-m-s
Weight		0	tonf	Rotati	onal Inert	ia 2	0	tonf-m-s
				Rotati	onal Inert	ia 3	0	tonf-m-s
Directional P	roperties							
Direction	Fixed	NonLinear	Properties	Direction	Fixed	NonLinear	Propertie	s
🗹 U1			Modify/Show for U1	🗌 R1			Modify/Show f	
✓ U2			Modify/Show for U2	🗌 R2			Modify/Show f	
✓ U3			Modify/Show for U3	🗌 R3			Modify/Show f	
			Fix All	Clear All				

Figura 4.3 Definición de propiedades del aislador en ETABS Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Property Name	HDRB
Direction	U1
Туре	Rubber Isolator
NonLinear	No
Linear Properties	
Effective Stiffness	43,298 tonf/mm
Effective Damping	0,1144 tonf-s/mm

Figura 4.4 Ajuste de propiedades en la dirección U1 Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Property Name	HDRB	
Direction	U2	
Туре	Rubber Isolator	
NonLinear	Yes	
Linear Properties		
Effective Stiffness	0,0527 tonf/mm	
Effective Damping	0,00653 tonf-s/mm	
Shear Deformation Location		
Distance from End-J	0m	
Nonlinear Properties		
Stiffness	0,3 tonf/mm	
Yield Strength	5,4023 tonf	
Post Yield Stiffness Ratio	0.1144	

Figura 4.5 Ajuste de propiedades en la dirección U2 **Fuente:** Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Se realiza la misma modificación para la dirección U3 y se procede a dar clic a la opción OK para aprobar todos los cambios establecidos en la ventana "Link Property Data". La versión 2015 del programa ETABS no permite que se asignen directamente las propiedades Link a los apoyos de la edificación, que en este caso es donde se van a ubicar los aisladores de alto amortiguamiento, por lo contrario, crea una opción para enlazar esta característica a unos elementos denominados springs. Los cuales simularán el movimiento que tendría un dispositivo aislador ante un evento sísmico.

Para ello se seleccionan los nodos, en la pestaña *assign > joint > springs* y se añade una nueva propiedad en la ventana de *point spring properties* en la cual se va a enlazar la propiedad Link, definida anteriormente, en el eje +Z a los nodos de la base.

Display Color Property Notes	M	Change odify/Show Notes	
ipring Stiffness Options	ties O Ba	sed on Soil Profile and	Footing Dimensions
imple Spring Stiffpass in Glabal	Directions		reading billionation
Translation X	Directions	0	tonf/mm
Translation Y		0	tonf/mm
Translation Z		0	tonf/mm
Rotation about X-Axis		0	tonf-mm/rad
Rotation about Y-Axis		0	tonf-mm/rad
Rotation about Z-Axis		0	tonf-mm/rad
ingle Joint Links at Point			
Link Property	Axial Direction	Axis 2 Angle	
HDRB	✓ +Z	0	Add
			Delete

Figura 4.6 Ajuste de propiedades en la base **Fuente:** Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Finalmente se asignará un diafragma rígido para los nodos de la base y se procederá con el análisis de desplazamientos y derivas, estos desplazamientos se van a contrastar con los obtenidos por el modelo original para observar cuanta diferencia existe y respecto a las derivas se comprobará que cumplan con los valores mínimos que estipula la norma ecuatoriana.

Figura 4.7 Asignación de aisladores a los puntos base Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Figura 4.8 Esquema de la instalación de aisladores HDRB Fuente: Autores

4.2.4. Resultados obtenidos con aisladores sísmicos.

A continuación se detalla en la tabla los desplazamientos obtenidos por efecto del sismo en X e Y, ambos resultados serán comparados respecto a la estructura original teniendo en cuenta que todo el edificio tenderá a moverse puesto que se encuentra aislado de los efectos del sismo.

Modelo Original		Modelo	aislado
Х	Y	Х	Y
mm	mm	mm	mm
91,1	73	39,2	47,3
76,1	61,6	37,5	46,8
59,1	50	35,6	46,2
53,4	39,9	38,3	45,4
45	32,1	37,2	42,9
43,2	26	40,8	41,5
31,2	21,5	39,1	41,6
19	14,1	37,1	40,2
6,4	6,9	30,9	38,6
0	0	28,7	35,7

Tabla XXXI Desplazamientos de la estructura debido a sismo en X

XXII	Desplazar	nientos de	la estructu	ra debido a	IS
	Modelo	Original	Modelo	aislado	
	Х	Y	Х	Y	
	mm	mm	mm	mm	
	91,1	73	29,6	42	
	76,1	61,6	28,3	41,4	
	59,1	50	26,9	40,8	
	53,4	39,9	32,1	40	
	45	32,1	31,3	37,5	
	43,2	26	36,9	36,3	
	31,2	21,5	35,3	36,6	
	19	14,1	33,5	38,3	

Tabla XXXII Desplazamientos de la estructura debido a sismo en Y

Modelo	Original	Modelo	aislado	
Х	Y	X	Y	
mm	mm	mm	mm	
Modelo Original		Modelo aislado		
Х	Y	X Y		
mm	mm mm		mm	
6,4	6,9	26	33,6	
0	0	23,6	30,5	
Fuente: Autores				

Además de los desplazamientos ocurridos en la estructura, se pueden corroborar los periodos de vibración de cada dirección a la que se deforma la edificación. Se tiene que los periodos son los enseñados en la tabla XXXIV y se aproximan bastante al periodo de diseño al cual se estimaba llevar a la estructura para que soporte menor carga sísmica.

Se distingue para el primer modo una participación modal de 0.41 en Y, lo que implica una traslación en ese eje, por otro lado, en el segundo modo se tiene una participación de 0.62 en X, que se traduce como una traslación sobre ese eje de igual manera.

Por último se tiene que alrededor del modo 3 la participación modal mayoritaria corresponde a Rz con 0.69, lo que implica en una rotación alrededor de ese eje.

Mada	Period			D 7	
woue	sec	07	UT	κz	
1	1,951	0,2989	0,4141	0,2798	
2	1,816	0,6294	0,354	0,0102	
3	1,648	0,062	0,225	0,6996	

Tabla XXXIII Periodos y participación modal caso HDRB

De igual manera se analizaron las derivas ocasionadas en la estructura debido al efecto sísmico, los resultados mostrados en la tabla XXXV indican que para ningún piso se excede la deriva permisible estipulada en la NEC 2015 para una edificación irregular. En el capítulo 3 se indicó que la deriva máxima permisible es de 0.013, valor que no es excedido por las derivas ocasionadas por la edificación sobre el sistema de aislación.

Si llegara a existir un problema de derivas en la edificación se debe revisar en qué entrepiso ocurre la falla y analizar los elementos estructurales con el objetivo de modificar sus propiedades físicas y así asegurarse de no exceder los límites establecidos para derivas según la presente norma ecuatoriana.

		SPCX		SP	СҮ
		Modelo aislado		Modelo	aislado
PISO	Elevación (m)	х	Y	х	Y
P9	31,5	0,000405	0,000453	0,000295	0,00043
P8	27,73	0,000474	0,00058	0,000345	0,000559
P7	23,98	0,000435	0,000391	0,000309	0,000394
P6	19,3	0,000373	0,000282	0,000283	0,000329
P5	16,6	0,000406	0,00037	0,000317	0,000383
P4	13,72	0,000508	0,000403	0,000439	0,00043
Р3	10,87	0,00049	0,000369	0,000443	0,000385
P2	7,63	0,000411	0,000402	0,000373	0,000401
P1	4,39	0,000467	0,003568	0,000468	0,003913
BASE	0	0	0	0	0

 Tabla XXXIV
 Análisis de derivas para cada piso de la estructura

4.3. Método de Protección sísmica: Disipadores pasivos

Como se expuso en el capítulo 2, existen dos tipos de disipadores pasivos, disipadores histeréticos que disipan energía mediante la fricción de los elementos empleados o plastificación de metales, y los disipadores viscoelásticos que requieren de un sistema viscoso para su funcionamiento.

Cabe destacar que los disipadores histeréticos se comportan mejor en estructuras flexibles y los disipadores viscoelásticos en estructuras más rígidas.

4.3.1. Método de protección sísmica: disipadores pasivos histeréticos

4.3.1.1 Descripción del método

En esta parte se analizará el uso de disipadores histeréticos por su bajo coste en relación a los demás sistemas, simplicidad en cuanto a su procedimiento constructivo y adherencia a la estructura

Los disipadores histeréticos a su vez se clasifican en aquellos que disipan energía en la medida que se produce la plastificación de sus elementos y los disipadores por fricción. (Oviedo & Duque , 2006)

En base a lo expuesto por el Ing. Ricardo Ramón Oviedo Sarmiento en su tesis de maestría "Dispositivos Pasivos de Disipación de Energía para Diseño Sismo resistente de Estructuras", los disipadores por fricción presentan inconvenientes en cuanto al cálculo del coeficiente de fricción durante el desplazamiento, ya que este
depende de la velocidad, de la presión normal y de las condiciones de las superficies en contacto. Consecuentemente, resulta difícil garantizar un coeficiente de fricción cuya diferencia es significativa si los elementos trabajan en el rango no lineal. Lo que dificulta el análisis de estos elementos mediante el modelo elaborado y la obtención de resultados para la toma de decisiones correspondiente.

Entre los disipadores histeréticos por plastificación de metales, se encuentran los disipadores por fluencia compuestos de placas metálicas que disipan energía por flexión pura al enrollarse por efecto del desplazamiento relativo entre sus extremos cuyo comportamiento histerético ha demostrado ser muy estable. (Pazmiño Lincago , 2015).

De acuerdo con Xua Z. et al. (2007), incluso para condiciones críticas como movimientos sísmicos en campo cercano, los disipadores por fluencia pueden reducir simultáneamente el desplazamiento, la aceleración y la energía que deben soportar los elementos estructurales.

Figura 4.9 Cuadro conceptual de disipación de energía y selección de disipador pasivo para análisis Fuente: Pimiento, Salas, & Ruiz1, 2014

Se seleccionó el sistema de placas ranuradas PMAL, donde la disipación de la energía ocurre por la fluencia del acero, provocado por los desplazamientos relativos en el dispositivo, sus ventajas radican en su comportamiento estable, buena resistencia a factores ambientales y de temperatura. Adicionalmente, tienen bajo costo dada la naturaleza del material y la facilidad en fabricación en talleres de metalmecánica, factor que resulta importante para países en vías de desarrollo.

4.3.1.2 Modelamiento de disipadores pasivos histeréticos

Las diagonales empleadas en el sistema son concéntricas, es decir, se intersecan en un nudo, formando de esta manera rótulas plásticas que permite la rotación de la deformación plástica de la conexión y supone una estructura sujeta principalmente a fuerzas axiales de compresión y tensión, provocadas por los sismos.

Este sistema se caracteriza por la elevada rigidez lateral, lo que facilita el registro de desplazamientos laterales generados en cada piso, y de esta manera comprobar la reducción de los desplazamientos generados por el sismo.

El acero usado para la fabricación de estas placas ranuradas es usualmente ASTM-A36 y requiere de un montaje a base de diagonales o riostras que otorguen una conexión rígida para que la energía de entrada al sistema se concentre en los disipadores y no en los elementos portantes.

Las diagonales con secciones cuadradas o circulares presentan ciertas ventajas principalmente económicas frente a las diagonales con secciones tipo I o secciones canal debido a que se logra disminuir la cantidad de material utilizado. Adicionalmente, los elementos más compactos tienen mayor capacidad de disipar la energía y evitar que las riostras sufran fracturas debido a las grandes deformaciones que puedan existir por efectos del pandeo.

En base a lo expuesto anteriormente, se eligió un perfil tubular 100x200x4mm para modelamiento de las riostras.

General Data				
Property Name	VC100X200X	4		
Material	A36-1		~	2
Display Color		Change		3
Notes	Modif	y/Show Notes		č →
Shape				
Section Shape	Steel Tube		\sim	
Section Property Source				
Source: User Defined				
Section Dimensions				Property Modifiers
Total Depth		100	mm	Modify/Show Modifiers
Total Width		200	mm	Currently Default
Flange Thickness		4	mm	
Web Thickness		4	mm	
Comer Radius		0	mm	
				ОК

Figura 4.10 Ventana para definición del perfil utilizado para riostras **Fuente:** Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.EDB

Las diagonales fueron asignadas mediante la opción *Moment Releases-Pinned* para simulación de las rótulas generadas por las placas paralelas de los disipadores.

Properties of Object		
Type of Line	Frame	-
Property	VC100X200X4	
Moment Releases	Pinned	
Plan Offset Normal, mm	0	
Line Drawing Type	Straight Line	

Figura 4.11 Ventana para definición de características de las diagonales Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.EDB Para la elección de la configuración de las diagonales concéntricas, se debe tener en consideración el balance entre las diagonales que se encuentran a tracción y las que se encuentran a compresión, caso contrario, se obtendría una respuesta asimétrica del sistema lo que ocasiona graves problemas de distorsiones de piso.

 Figura 4.12 Configuración de diagonales para colocación disipadores pasivos. Configuraciones de riostra: (a) en X, (b) diagonales, (c) en V y (d) en V invertida
 Fuente: Crisafulli Francisco Javier, 2008, "Diseño sismo resistente de construcciones de acero", 1ra edición, Asociación Latinoamericana del Acero, Santiago de Chile

Se empleará una configuración de riostras en V invertida donde el vértice de las diagonales está conectado en la zona central de las vigas donde las fuerzas axiales de compresión y tracción que se generan en las diagonales del pórtico son iguales en magnitud; mientras la diagonal comprimida se pandea, su capacidad resistente disminuye, y la diagonal traccionada aumenta su resistencia.

Es importante también que las riostras de cada plano del edificio sean colocadas de manera que la respuesta del sistema es prácticamente simétrica en cuanto a resistencia y rigidez; para lo cual es recomendable que exista un número par de riostras en cada plano existente, y además deben tener igual sección y ángulo de inclinación según lo recomendado por Karla Aguilar en su Estudio Comparativo de Edificios de Acero de gran Altura con Diagonales Excéntricas, Concéntricas y Diagonales con Amortiguadores en la Ciudad de Quito.

En el capítulo 3 se obtuvieron los valores de las derivas para cada piso, donde los mayores valores se encontraban en los pisos superiores de la estructura debido a su esbeltez y falta de rigidez en esta zona. La disposición de las riostras invertidas en V para el sistema se estableció según estos resultados de manera que se logre la disminución de los desplazamientos generados en el sistema.

Figura 4.13 Disposición de riostras invertidas en V en el modelo **Fuente:** Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.EDB

4.3.1.3 Resultados obtenidos con disipadores histeréticos

El análisis del modelo proporciona los valores de los desplazamientos generados en el modelo con la implementación del método de protección sísmica, se observa su reducción en los niveles superiores de la estructura.

Modelo con Porcentaje de **Modelo Original** DPH Reducción Elevación Planta Х Υ Х Υ Х Υ mm mm mm mm mm mm m Ρ9 20.14% 31.5 91.1 73 51.2 58.3 43.80% P8 27.73 76.1 49.7 57.5 34.69% 61.6 6.66% 59.1 P7 23.98 50 47.6 56.5 19.46% -P6 19.3 53.4 39.9 55.1 54.1 --Ρ5 45 32.1 49.1 48.8 16.6 _ P4 40.4 13.72 43.2 26 50.3 --Ρ3 10.87 31.2 21.5 38.3 30.5 -_ P2 7.63 19 14.1 24.6 19 -P1 6.4 4.39 6.9 8.8 8.6 --BASE 0 0 0 0 0 --

 Tabla XXXV
 Valores de desplazamientos con riostras concéntricas tipo V invertida – Sismo en la dirección X

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.EDB

Tabla XXXVI Valores de desplazamientos con riostras concéntricas tipo V inverti	ida -
Sismo en la dirección Y	

Inclusion	Elevación	Modelo Original		Model rios	o con tras	Porcentaje de Reducción		
lanta		Х	Y	Х	Y	Х	Y	
	m	mm	mm	mm	mm	mm	mm	
P9	31.5	26.5	80.7	11	64.8	58.49%	19.70%	
P8	27.73	21.8	60.5	11.3	55.2	48.17%	8.76%	
P7	23.98	21	43.6	11.7	45.2	44.29%	-3.67%	
P6	19.3	19.6	38.2	11.7	37.4	40.31%	2.09%	
P5	16.6	17	31.3	10.2	30.9	40.00%	1.28%	
P4	13.72	13.3	23.4	7.8	22.9	41.35%	2.14%	
P3	10.87	10.6	16.4	5.8	15.6	45.28%	4.88%	
P2	7.63	7.4	9.8	3.1	9.3	58.11%	5.10%	
P1	4.39	2.8	4.4	1.2	4.1	57.14%	6.82%	
BASE	0	0	0	0	0	-	-	

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.EDB

Planta	Columna	P (MO)	P (DPH)	V2 (MO)	V2 (DPH)	Т (МО)	T (DPH)	M3 (MO)	M3 (DPH)
		tonf	tonf	tonf	tonf	tonf-m	tonf-m	tonf-m	tonf-m
P9	255	0.4878	0.0804	0.5399	0.084	0.1506	0.0387	1.1827	0.1732
P9	287	0.496	0.0789	0.3604	0.0885	0.1506	0.04	0.7355	0.1843
P9	312	0.4536	0.2309	1.0441	0.0819	0.1506	0.0499	2.1362	0.1625
P9	313	1.5629	2.5088	0.1012	0.0874	2.1542	0.3031	0.8962	0.0368
P9	315	0.0653	0.061	0.0289	0.0048	0.0744	0.0261	0.0452	0.007
P9	372	1.9818	0.1802	0.4971	0.133	2.1542	0.2368	1.7268	0.253
P9	296	0.2293	0.1115	0.9629	0.072	0.1506	0.0418	1.979	0.1461
P9	311	0.2329	0.1467	0.6967	0.084	0.1506	0.0423	1.3992	0.1718
P9	133	0.9961	1.0431	0.0269	0.0364	0.0744	0.0412	0.0497	0.0686
P9	173	0.0547	0.1124	0.0283	0.0359	0.0744	0.0186	0.0108	0.0448
P8	384	1.0841	0.4693	0.5194	0.0286	0.1959	0.078	0.9766	0.1172
P8	385	1.2784	0.4372	0.2031	0.04	0.1959	0.0804	0.4335	0.1158
P8	388	0.9012	0.6051	0.9429	0.026	0.1959	0.0887	1.7215	0.14
P8	389	3.2643	6.4066	1.6255	0.0847	2.8011	0.588	2.0629	0.3559
P8	391	1.141	1.0857	0.028	0.0128	0.0967	0.0283	0.05	0.0168
P8	405	4.0231	2.243	2.3506	0.1437	2.8011	0.3643	4.273	0.9485
P8	386	0.5797	0.6847	0.9088	0.0263	0.1959	0.0604	1.6475	0.133
P8	387	0.601	2	0.4836	0.0615	0.1959	0.0573	0.8893	0.1468
P8	316	1.4586	0.7029	0.0629	0.0316	0.0967	0.0401	0.1124	0.054
P8	330	2.1193	1.4036	0.0687	0.0307	0.0967	0.0148	0.11	0.0518
P7	79	1.7931	2.0057	2.4289	0.4961	1.9708	0.3816	1.1586	0.7731
P7	80	2.0538	2.0082	1.5357	0.8419	1.9708	0.3756	0.7756	0.5044
P7	83	2.2307	3.6935	4.9696	0.4367	1.9708	0.6485	7.4228	1.069
P7	84	7.3327	10.7192	2.0485	0.7298	1.9708	0.7533	2.8046	0.7076
P7	86	3.0047	1.5617	0.0765	0.0591	0.068	0.034	0.1648	0.1119
P7	108	6.1315	4.8188	1.7663	0.4391	1.9708	0.5201	3.3557	1.683

Blanta	Columna	P (MO)	P (DPH)	V2 (MO)	V2 (DPH)	Т (МО)	T (DPH)	M3 (MO)	M3 (DPH)
Fianta	Columna	tonf	tonf	tonf	tonf	tonf-m	tonf-m	tonf-m	tonf-m
P7	81	3.4476	4.3473	4.936	0.4696	1.9708	0.5948	7.2933	1.0701
P7	82	3.2916	5.1839	3.469	0.8268	1.9708	0.58	5.7462	0.7606
P7	314	6.0642	4.2274	0.1016	0.068	0.068	0.0368	0.2087	0.136
P7	319	5.0759	4.3904	0.0348	0.0198	0.068	0.0276	0.129	0.0759
P6	123	2.8209	12.9708	4.3066	5.2591	1.5588	1.684	3.9858	7.5639
P6	124	12.0321	16.934	3.1964	5.1336	1.5649	1.5908	7.4057	10.9167
P6	125	6.6428	2.8502	4.5529	1.18	1.5649	1.571	5.5432	4.4184
P6	137	2.3438	1.8032	4.6428	1.3336	1.5649	1.5511	5.4101	4.2898
P6	148	12.3902	5.4792	2.1872	2.3391	1.5649	1.5832	3.9924	5.9476
P6	121	3.8708	14.9261	4.4886	5.0277	1.6501	1.7221	3.9553	7.3655
P6	122	8.4103	11.9923	2.2737	3.5036	1.5649	1.479	4.6868	8.4305
P5	159	7.7989	12.0849	2.0233	2.5283	1.8711	2.4531	4.0637	5.9361
P5	160	8.0876	10.94	2.1388	3.5241	1.8711	2.2674	3.8277	6.6451
P5	163	8.168	14.1568	8.2558	6.4773	1.8694	2.5145	7.4124	7.6495
P5	164	15.5222	20.2192	2.2477	0.9876	1.8643	2.5687	4.2354	6.46
P5	165	13.3318	6.9698	2.6512	4.0307	1.8711	2.4488	4.7429	7.1282
P5	177	5.4256	5.4568	1.8421	3.2504	1.8711	2.3525	4.5151	6.7948
P5	188	18.3163	8.8775	1.7154	2.24	1.8609	2.5047	3.506	5.4525
P5	161	11.2935	18.4522	7.5281	5.4506	1.8808	2.2074	6.3779	6.7946
P5	162	12.6535	13.3537	2.9244	4.5786	1.8711	2.3379	5.0039	8.4526
P5	274	0.1259	0.1185	0.1763	0.1398	0.1491	0.2193	0.0244	0.0247
P5	275	0.0765	0.0828	0.1752	0.1517	0.1524	0.219	0.0241	0.0172
P5	26	0.1796	0.1272	0.2427	0.3527	0.1722	0.2591	0.0269	0.0392
P5	54	0.0076	0.0107	0.3162	0.3688	0.1746	0.264	0.0378	0.0452
P5	100	0.0079	0.0066	0.325	0.3826	0.1701	0.2558	0.0352	0.0418
P5	102	0.0285	0.0294	0.3796	0.389	0.1687	0.2597	0.0471	0.0497
P4	199	10.486	15.5101	4.6807	4.2914	2.079	2.5191	4.19	5.2348

Blanta	Columna	P (MO)	P (DPH)	V2 (MO)	V2 (DPH)	Т (МО)	T (DPH)	M3 (MO)	M3 (DPH)
Flanta	Columna	tonf	tonf	tonf	tonf	tonf-m	tonf-m	tonf-m	tonf-m
P4	200	11.4139	13.7536	3.9577	4.3987	2.079	2.8815	2.5417	3.6806
P4	203	13.8203	17.5764	7.5848	7.7797	2.079	2.8949	7.6764	8.5071
P4	204	19.3968	24.6958	4.4526	8.9157	2.0706	4.0021	3.2343	7.7038
P4	205	20.0051	12.45	7.3408	6.0524	2.079	3.1991	8.0416	8.1806
P4	217	9.3969	10.1005	5.7468	4.5769	2.079	3.0635	5.5834	5.6708
P4	228	26.6493	16.8987	4.5652	4.9168	2.0673	2.9659	3.9781	4.8736
P4	201	18.6709	24.6301	4.2006	5.392	2.079	2.8808	5.9114	8.2603
P4	202	14.6102	14.4874	6.9474	8.9434	2.079	3.4325	4.2951	6.5743
P4	105	0.1095	0.1652	0.1475	0.1623	0.1741	0.2938	0.0221	0.0292
P4	110	0.0837	0.1182	0.1628	0.1934	0.1776	0.2947	0.0181	0.0136
P4	184	0.1526	0.1587	0.2821	0.4921	0.201	0.3476	0.0313	0.0547
P4	218	0.009	0.0106	0.3384	0.489	0.2037	0.3474	0.0411	0.0596
P4	219	0.0067	0.0084	0.3548	0.518	0.1986	0.345	0.0385	0.0566
P4	232	0.0278	0.0397	0.3564	0.5219	0.1969	0.3386	0.0449	0.067
P3	239	12.3942	18.9587	2.2672	4.6243	2.4811	2.5755	4.1666	5.5189
P3	240	14.3499	17.2164	2.2452	4.6561	2.4811	2.9182	4.1297	5.5142
P3	243	14.4647	18.8973	2.4542	3.089	2.4811	2.6126	2.2865	3.1011
P3	244	33.2528	37.6656	0.8386	1.0335	2.4811	3.6848	2.5736	2.9751
P3	245	26.9769	18.4858	0.7046	1.5931	3.2981	4.951	2.037	3.0577
P3	246	3.6015	3.6051	2.8843	3.089	2.4811	2.3795	2.8623	4.0004
P3	257	12.3817	14.3452	2.2886	2.5819	3.2981	4.1562	2.2089	2.9145
P3	268	32.1581	23.1146	0.9534	1.1072	2.4811	3.4288	2.5874	2.5938
P3	241	18.9259	25.0464	19.9554	19.7079	2.5692	2.902	2.0591	2.1953
P3	242	15.5879	15.4994	5.1645	2.4808	2.7429	3.4754	3.9565	3.6138
P2	279	13.5445	21.841	3.7164	5.148	2.3916	2.5888	1.9027	2.1972
P2	280	16.8566	20.4962	3.7548	5.003	2.3402	2.9208	1.9164	2.1955
P2	283	26.8718	33.2444	2.8208	4.387	2.3229	3.2905	1.5045	4.0687

Planta	Columna	P (MO)	P (DPH)	V2 (MO)	V2 (DPH)	Т (МО)	T (DPH)	M3 (MO)	M3 (DPH)
Fianta	Columna	tonf	tonf	tonf	tonf	tonf-m	tonf-m	tonf-m	tonf-m
P2	284	48.9409	50.9838	3.2578	8.2854	2.3229	3.1054	0.9233	4.897
P2	285	31.1521	23.9293	0.4707	0.9819	3.0878	4.081	0.6418	1.0754
P2	286	6.9241	7.2559	1.9448	4.151	2.3229	2.8121	2.6458	1.9084
P2	297	14.9729	18.2598	2.8283	3.224	3.0878	4.009	1.3879	2.8199
P2	308	37.0938	29.2806	2.7804	3.476	2.3229	3.1968	1.0398	1.7159
P2	281	31.6468	38.4602	20.3914	20.4756	2.4578	3.0843	6.727	4.2701
P2	282	20.5597	22.4871	5.8094	1.3666	2.455	3.241	8.0261	4.8649
P1	2	14.9144	25.6399	3.723	5.5191	1.5701	2.2572	2.7331	1.5409
P1	3	20.2886	25.5747	3.7306	5.5016	1.5701	2.4203	2.7229	1.5597
P1	6	55.5664	55.7116	1.9714	3.7119	1.5701	2.7487	4.324	3.9933
P1	7	75.8578	82.9964	2.1091	3.0269	1.5701	1.0176	5.3506	8.8039
P1	8	34.9781	29.1693	1.9865	1.3828	2.0871	2.5035	0.9295	1.6113
P1	10	9.5803	10.2323	1.9922	3.0782	1.5701	2.2227	5.2797	9.23
P1	42	16.1987	19.859	2.5494	4.5336	2.0871	3.1136	3.5533	1.9963
P1	63	40.2254	33.0042	1.2548	2.0991	1.5701	2.1661	4.2623	5.2726
P1	4	40.679	47.4775	2.3891	4.8636	1.5701	2.3396	3.3621	3.73 <mark>45</mark>
P1	30	25.2871	28.8014	4.7818	1.0985	1.6456	2.6355	9.4878	8.1695

 Tabla XXXVII Valores de Fuerza axial, fuerza cortante, torsión y momento en la estructura original y estructura con disipadores histeréticos – Sismo en la dirección X

 Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.EDB

En la Tabla XXXVIII se detallan los valores de fuerza cortante, fuerza axial y momento provocado por el sismo en X definido en el modelo como SPCX que proporciona el mayor aumento en la fuerza axial en las secciones.

Las columnas marcadas representan el mayor incremento de la fuerza axial en los elementos, aquellas columnas que serán que ser revisadas en cuanto a su capacidad y su carga última según lo establecido por del código AISC 360-05.

El programa ETABS no realiza la comprobación de las secciones compuestas, los datos que se obtienen del programa son las solicitaciones a las cuales está sometida la columna y ciertas propiedades de la misma por lo que es indispensable realizar el chequeo manual de acuerdo a lo establecido en la sección I del código AISC 360-05. Se procede con la comprobación de la columna cuyo aumento de fuerza axial debido a los elementos colocados es el mayor. Corresponde a la columna C3- 121 del piso 6.

Del programa se obtienen las solicitaciones a las que está sometida la columna que son las siguientes:

Pu (ton)	18.0683	
Mux (ton-m)	1.5654	
Muy (ton-m)	0.6653	

Tabla XXXVIII Solicitaciones de columna C3 piso – Sismo en la dirección X

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.EDB

La norma indica que para secciones sometidas a flexión en donde el hormigón debería trabajar a tracción se debe ignorar la sección de hormigón y se debe calcular el momento nominal resistente únicamente tomando la sección de acero de acuerdo a lo establecido en la sección F de la norma. Se calcula el valor del momento nominal en ambos sentidos de acuerdo a lo establecido en la sección F7 del código AISC-05 para las condiciones indicadas, y se obtiene el valor del módulo plástico Z del programa.

$$Mn = Mp = Fy * Z$$

El acero de las planchas que confinan la columna es A572 Gr. 50 cuyo Fy es 35.1632 Kg/mm², la sección es cuadrada de 400x400 mm con un espesor t de la placa de 8 mm. La inercia en ambos sentidos para el tubo de acero rectangular sería 1844224mm⁴.

Se toman los datos de la columna a comprobar. La norma establece que la resistencia nominal a compresión de una sección tipo cajón de acero rellena de hormigón se debe calcular de la siguiente forma, calculando los parámetros requeridos en el siguiente orden:

Tabla XXXIX Datos de columna C3 piso 6

		-
L	2700	mm
Н	400	mm
В	400	mm
Fy	35.1632	Kg/mm2
Fc	2.813056	Kg/mm2
Es	20389.02	Kg/mm2

ls	1844224	mm4
Ec	2154.29	Kg/mm2
lc	1811939328	mm4
As	12544	mm2
Ac	147456	mm2

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Con los datos se procede a calcular el valor C3 de la siguiente manera:

$$C_3 = 0.6 + 2\left(\frac{As}{Ac + As}\right) \le 0.9$$

El valor C_3 debe ser inferior a 0.9, o en su defecto se tomará el valor de 0.9 para el cálculo de la rigidez efectiva de la sección compuesta.

$$EI_{ff} = (Es * Is) + (C_3 * Ec * Ic)$$

Donde:

- As = Área de la sección de acero.
- Ac = Área de la sección de concreto.
- EI_{ff}= Rigidez efectiva de la sección compuesta.
- Ec = Módulo de elasticidad del concreto
- Es = Módulo de elasticidad del acero.
- Ic = Inercia de la sección de concreto.
- Is = Inercia de la sección de acero

$$P_o = As * Fy + C_2 * Ac * f'c$$

El valor C_2 es 0.85 para secciones rectangulares.

$$Pe = \pi^2 * \frac{EI_{ff}}{(KL)^2}$$

Se asume un valor de k=1 de acuerdo a los establecido en la sección C del código.

Si $Pe \geq 0.44 P_o$

$$P_n = P_o(0.658^{\frac{P_o}{Pe}})$$

Luego se calcula la siguiente relación para verificar si es el caso de carga axial grande o carga axial pequeña

$$\frac{Pu}{\wp P_n} \ge 0.2$$
 (Carga Axial Grande)

 $\frac{Pu}{\phi P_n} < 0.2$ (Carga Axial Pequeña)

El análisis demostró tener una carga axial pequeña para dicha columna por lo que se deberá comprobar que:

$$\frac{Pu}{\phi P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right) \le 1.0$$

El valor de \emptyset para el cálculo de $\emptyset P_n$ es igual a 0.75 por ser el análisis a flexo tensión.

 ϕ_b es el factor de reducción de resistencia a flexión y es igual a 0.90.

Del cálculo se obtiene:

Calculo de resistencias nominales de column						
Eleff	2.99173E+12					
Po	793.6688685 ton					
Pe	4046.260026 ton					
0.44Po	349.2143021 ton					
Pe>0.44Po	ОК					
Pn	731.1131255 ton					
φPn	548.3348442 ton					
Pu/φPn	0.032951216					
φbMnx	58.36393562 ton-m					
φbMny	58.36393562 ton-m					
Fuente: Autores						

Tabla XL Cálculo de resistencias nominales de columna C3 piso 6

Con lo que se verifica que la sección es satisfactoria.

$$\frac{Pu}{\emptyset P_n} + \left(\frac{M_{ux}}{\emptyset_b M_{nx}} + \frac{M_{uy}}{\emptyset_b M_{ny}}\right) = 0.05057 \le 1.0 \ O$$

Adicionalmente, se analiza la columna más crítica que corresponde al piso 1.

Columna C7-2 cuya sección compuesta es de 400x450 mm con un espesor de placa de 8mm.

Cuyas solicitaciones son:

Pu	90.1377	ton
Mux	8.2388	ton-m
Muy	7.49	ton-m

Cuyas propiedades geométricas y de los materiales son descritas a continuación:

	Jalos de columna	
L	4390	mm
Н	450	mm
В	400	mm
Fy	35.1632	Kg/mm2
Fc	2.813056	Kg/mm2
Es	20389.02	Kg/mm2
ls	421611872	mm4
Ec	2154.29	Kg/mm2
lc	2615888128	mm4
As	13344	mm2
Ac	166656	mm2

Tabla XI I Datos de columna C7-2 niso 1

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Del cálculo se obtuvo:

C3	0.75	
Eieff	1.2813E+13	
Po ton	867.7085024	ton
Pe ton	6555.137378	ton
0.44Po	381.7917411	ton
Pe>0.44Po	OK	
Pn ton	820.9416252	ton
φPn ton	615.7062189	ton
Pu/φPn	0.146397254	
φbMnx	13342.70032	ton-m
φbMny	11143.84978	ton-m
	Euonto: Autoros	

Tabla XLII Cálculo de resistencias nominales de columna C7-2 piso 1

Fuente: Autores

El análisis demostró tener una carga axial pequeña para dicha columna por lo que se deberá comprobar que:

$$\frac{Pu}{\phi P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right) \le 1.0$$

Con lo que se verifica que la sección es satisfactoria

$$\frac{Pu}{\wp P_n} + \left(\frac{M_{ux}}{\wp_b M_{nx}} + \frac{M_{uy}}{\wp_b M_{ny}}\right) = 0.05618 \le 1.0 \ OK$$

De esta forma se comprueba que las secciones son satisfactorias pese al aumento de carga axial impuesto por el sistema de disipadores pasivos histeréticos propuesto.

4.3.2. Método de Protección sísmica: disipadores pasivos viscoelásticos

4.3.2.1 Descripción del método

El principio básico de los disipadores pasivos viscoelásticos consiste en movilizar un elemento a través de un material viscoelástico lo que genera fuerzas que se oponen al movimiento del elemento, de magnitud proporcional a la velocidad.

Figura 4.14 Funcionamiento del disipador de energía de fluido viscoso Fuente: "Here is how it works" [TAY1998] - (Morales Díaz & Contreras Bálbaro, 2012)

El movimiento de la edificación empuja el pistón hacia el interior del cilindro, comprimiendo el fluido de la cámara 2. Por los orificios de la cabeza del pistón pasa flujo de la cámara 2 a la 1, generando una fuerza de amortiguamiento que buscará igualar la presión en ambas cámaras. Al ser la presión en la cámara 2 mayor que en la cámara 3, por la válvula de control pasa líquido a la cámara 3, lo que evita que el pistón tenga un efecto de rebote.

La fuerza (F) del disipador varía con la velocidad inducida en la estructura, depende de una constante de amortiguamiento (C), la velocidad relativa de sus extremos (\dot{X}) y de un exponente alfa (α) mediante la siguiente expresión:

$$F = C * \dot{X}^{\alpha}$$

Donde

F = es la fuerza del disipador, lb

 \dot{X} = velocidad relativa entre el amortiguador, pulg/seg

 α = constante de amortiguamiento (lb x seg / pulg)

La constante C es determinada principalmente por el diámetro de la compuerta y el área del orificio del pistón.

El valor exacto de α depende de la forma de la cabeza del pistón. Se denomina "Disipador Viscoso Lineal" cuando la constante α toma el valor de 1, en ese caso F aumenta linealmente con la velocidad. Se le "Disipador Viscoso No Lineal" cuando la constante α toma valores distintos a 1.

Para dispositivos no lineales, las fuerzas de amortiguamiento se van reduciendo conforme disminuye la constante α . A menor valor del α , el disipador empieza a tener un comportamiento similar al de un disipador de fluencia. (Morales Díaz & Contreras Bálbaro, 2012).

Según el fabricante, Taylor Devices, empresa líder mundial en control de impactos y vibraciones, este exponente está ligado a la dimensión de los orificios del pistón, por lo que sólo puede tomar valores de 0.3 a 2. Sin embargo, en reforzamientos de edificaciones usualmente se adopta valores de 0.3 a 1. Los valores de α , los cuales han demostrado ser más populares están en el rango de 0.4 a 0.5 para el diseño de edificaciones con registros sísmicos.

Existen diversas maneras de colocar los disipadores. Cada una de ellas puede lograr una eficiencia diferente, se mide en función de la fuerza en el dispositivo en relación a la velocidad (o desplazamiento) del entrepiso.

La configuración diagonal es la más económica, debido a que sólo requiere de tubos metálicos para la instalación de los disipadores. La componente horizontal de la

fuerza que se genere es la que brindará amortiguamiento, su eficiencia depende del ángulo de inclinación del brazo metálico que va a sostener al disipador. Para un acceso cómodo, el amortiguador se instala habitualmente cerca de la esquina inferior y conectado mediante placas empernadas. (PhD Symans, 2003)

4.3.2.2 Modelamiento de disipadores pasivos viscoelásticos

El software ETABS permite al usuario modelar los disipadores pasivos viscoelásticos como herramienta de diseño y análisis.

Para su modelamiento se proponen los valores para las propiedades de los disipadores en base a lo expuesto anteriormente.

• Constante de amortiguamiento del disipador, C (KN-sec/mm)

 Rigidez: es la que corresponde a la rigidez de la diagonal, la cual está dada por EA / L

- Potencia de velocidad, α (0.4 0.5)
- Arreglo y ubicación de los disipadores

Se modelan los disipadores colocando las diagonales sin propiedad alguna (NONE) y se le asigna el tipo de disipador que se ha definido anteriormente. Se inicia definiendo el tipo y propiedades del disipador mediante la opción *Define -Section Properties – Link/Support Properties* de manera que se muestre la ventana que permite añadir un disipador o en su defecto modificar el existente.

k Properties	Click to:
)PV	Add New Property
	Add Copy of Property
	Modify/Show Property
	Delete Property
	ОК
	Cancel

Figura 4.15 Ventana para definir o añadir links que simulan los disipadores Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.DPV

A continuación, se definirán las propiedades como tipo de disipador *Damper – Exponential* Y *NonLinear* en la dirección U1 y modificar sus propiedades con *Modify/Show for U1.*

Link Prop Link Prop	erty Name erty Note	e DP\ s	/ Modify/Show Notes	Link Type P-Delta Pa	rameters	Dampe	per - Exponential ~ Modify/Show		
Total Mass a Mass Weight	nd Weigł	nt O	kg tonf	Rotati Rotati Rotati	onal Inert onal Inert onal Inert	ia 1 ia 2 ia 3	0	tonf-m-si tonf-m-si	
Directional P	operties]	
Direction	Fixed	NonLinear	Properties	Direction	Fixed	NonLinear	Properties		
🗹 U1			Modify/Show for U1	🗌 R1			Modify/Show for	R1	
🗌 U2			Modify/Show for U2	🗌 R2			Modify/Show for	R2	
🗌 U3			Modify/Show for U3	🗌 R3			Modify/Show for	R3	
			Fix All	Clear All					

Figura 4.16 Ventana para definición de tipo de disipador y propiedades Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPV.EDB

Las propiedades a ingresar en el disipador son:

• *Stiffness* (Rigidez): Rigidez de la diagonal y se calcula como EA/L, se seleccionó una diagonal semejante a los disipadores pasivos histeréticos que corresponde a un perfil tubular 100x200x4mm, cuyo valor E es igual a 20398.02 Kg/mm² y un área de 3136 mm².

• Damping (amortiguamiento): constante C de amortiguamiento del dispositivo a ser empleado.

• Damping exponent (valor α del dispositivo): se escogió 0.5 por lo antes expuesto.

Tink/Support Directional Properties

Direction U1 Type Damper - Exponential NonLinear Yes Linear Properties Effective Stiffness 0 torf/mm Effective Damping 0 torf-s/mm	U1 Damper - Exponential Yes 0 tonf/mm 0 tonf-s/mm 10302118 tonf/mm 1581.14 tonf*(s/mm)*Cexp	Direction U1 Type Damper - Ex NonLinear Yes Linear Properties 0 Effective Stiffness 0 Effective Damping 0 Nonlinear Properties 10302118 Stiffness 10302118 Damping 1581.14 Damping Exponent 0.5	ponential
Type Damper - Exponential NonLinear Yes inear Properties Interference Effective Stiffness 0 tonf/mm Effective Damping 0 tonf-s/mm	Damper - Exponential Yes 0 tonf/mm 0 tonf-s/mm 10302118 tonf/mm 1581.14 tonf*(s/mm)^Cexp	Type Damper - E NonLinear Yes inear Properties 0 Effective Stiffness 0 Effective Damping 0 Nonlinear Properties 0 Stiffness 10302118 Damping 1581.14 Damping Exponent 0.5	ponential
NonLinear Yes inear Properties Effective Stiffness 0 tonf/mm Effective Damping 0 tonf-s/mm	Yes 0 tonf/mm 0 tonf-s/mm 10302118 tonf*(s/mm)*Cexp	NonLinear Yes inear Properties 0 Effective Stiffness 0 Effective Damping 0 Ionlinear Properties 0 Stiffness 10302118 Damping 1581.14 Damping Exponent 0.5	
inear Properties Effective Stiffness Effective Damping O tonf-s/mm Inplicant Properties	0tonf/mm 0tonf-s/mm 10302118tonf/mm 1581.14tonf*(s/mm)^Cexp	inear Properties Effective Stiffness Iffective Damping Ionlinear Properties Stiffness Damping ISSUE Damping Stiffness IU302118 ISSUE ISSUE	
Effective Stiffness 0 tonf/mm Effective Damping 0 tonf-s/mm	0 tonf/mm 0 tonf-s/mm 10302118 tonf/mm 1581.14 tonf*(s/mm)^Cexp	Effective Stiffness 0 Effective Damping 0 Ionlinear Properties 0 Stiffness 10302118 Damping 1581.14 Damping Exponent 0.5	
Effective Damping 0 tonf-s/mm	0 tonf-s/mm 10302118 tonf/mm 1581.14 tonf*(s/mm)^Cexp	Effective Damping 0 Ionlinear Properties Stiffness 10302118 Damping 1581.14 Damping Exponent 0.5	tonf/mm
enlinear Proportion	10302118 tonf/mm 1581.14 tonf*(s/mm)^Cexp	onlinear Properties Stiffness Damping 1581.14 Damping Exponent	tonf-s/mm
ionimear Properties	10302118 tonf/mm 1581.14 tonf*(s/mm)^Cexp	Stiffness 10302118 Damping 1581.14 Damping Exponent 0.5	
Stiffness 10302118 tonf/mm	1581.14 tonf*(s/mm)^Cexp	Damping 1581.14 Damping Exponent 0.5	tonf/mm
Damping 1581.14 tonf*(s/mm)		Damping Exponent 0.5	tonf*(s/mm)^Cexp
Damping Exponent 0.5	0.5		

Figura 4.17 Definición de parámetros de disipador viscoelástico Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPV.EDB

La configuración de los disipadores se definió en base a los desplazamientos obtenidos del modelo original, restricciones en la estructura y el cambio en la excentricidad entre el centro de masa y centro de rigidez para cada planta.

 \times

Figura 4.18 Localización de disipadores pasivos viscoelásticos DPV Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPV.EDB

4.3.2.3 Resultados obtenidos con disipadores viscoelásticos

Los elementos disipadores fueron colocados en la parte superior de la estructura, piso 7, 8 y 9, por lo que se realiza la comprobación de no exceder los límites de excentricidad entre el centro de masa y centro de rigidez de estos pisos para evitar movimientos torsionales por efectos del sismo.

			Coorde	nadas			
Planta	Diafragma	Centro c	le Masa	Centro de	e Rigidez		
		X (m)	Y (m)	X (m)	Y (m)		
P1	D1	9.1457	6.5767	6.8041	8.4881		
P2	D2	9.0722	5.6407	7.156	7.8268		
P3	D3	9.1978	5.5242	7.4194	7.3816		
P4	D4	8.4052	5.412	7.6329	7.0904		
P5	D5	8.2256	6.3159	7.6918	6.8028		
P6	D6	7.6026	6.6309	7.6786	6.7169		
P7	D7	7.2605	7.1885	7.6215	6.9917		
P8	D8	7.8352	7.3634	7.4443	7.3612		
P9	D9	8.4976	7.2429	7.1939	7.8287		

 Tabla XLIII Coordenadas de centro de masa y centro de rigidez de la estructura con elementos disipadores pasivos viscoelásticos.

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6.EDB

Con el análisis del modelo se obtienen los desplazamientos producidos por el sismo en la dirección X y en dirección Y, y se calcula el porcentaje de reducción frente al modelo original sin el método de protección sísmica.

Dianta	Elevación	Mo Ori	delo ginal	Mode Di	lo con PV	Porcentaje de Reducción		
Planta		Х	Y	Х	Υ	Х	Y	
	m	mm	mm	mm	mm	mm	mm	
P9	31.5	91.1	73	48	55.7	47.31%	23.70%	
P8	27.73	76.1	61.6	45.9	54.6	39.68%	11.36%	
P7	23.98	59.1	50	44.1	53.3	25.38%	-	
P6	19.3	53.4	39.9	48.9	50.7	8.43%	-	
P5	16.6	45	32.1	43.2	43.5	4.00%	-	
P4	13.72	43.2	26	44.3	34.9	-	-	
P3	10.87	31.2	21.5	32.7	27.1	-	-	
P2	7.63	19	14.1	20.3	17.2	-	-	
P1	4.39	6.4	6.9	7	8	-	-	
BASE	0	0	0	0	0	-	-	

 Tabla XLIV Valores de desplazamientos con disipadores pasivos viscoso – Sismo en la dirección X

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.EDB

Disate	Elevación	Moo Orig	delo ginal	Modelo con DPV		Porcentaje de Reducción	
Planta		Х	Y	Х	Y	Х	Y
	m	mm	mm	mm	mm	mm	mm
P9	31.5	26.5	80.7	12	45.3	54.72%	43.87%
P8	27.73	21.8	60.5	11.6	43.6	46.79%	27.93%
P7	23.98	21	43.6	11.3	41.1	46.19%	5.73%
P6	19.3	19.6	38.2	16.4	36.1	16.33%	5.50%
P5	16.6	17	31.3	14.6	30.3	14.12%	3.19%
P4	13.72	13.3	23.4	15	21.6	0.00%	7.69%
P3	10.87	10.6	16.4	10.7	12.5	0.00%	23.78%
P2	7.63	7.4	9.8	6.5	6.7	12.16%	31.63%
P1	4.39	2.8	4.4	2.3	3.2	17.86%	27.27%
BASE	0	0	0	0	0	-	-

 Tabla XLV Valores de desplazamientos con disipadores pasivos viscoso – Sismo en la dirección Y

Fuente: Etabs 2015 versión 15.2.0. Archivo: TORRE4V6-DPH.EDB

De manera similar al análisis de implementación de los disipadores histeréticos, se deberá comprobar que las secciones sean satisfactorias frente al incremento de fuerza axial generada por los dispositivos.

Dianta	Columna	P (MO)	P (DPV)	V2 (MO)	V2 (DPV)	T (MO)	T (DPV)	M3 (MO)	M3 (DPV)
Planta	Columna	tonf	tonf	tonf	tonf	tonf-m	tonf-m	tonf-m	tonf-m
P9	255	0.4878	1.0629	0.5399	0.1232	0.1506	0.0203	1.1827	0.2569
P9	287	0.496	0.0692	0.3604	0.0714	0.1506	0.0203	0.7355	0.1636
P9	312	0.4536	2.4549	1.0441	0.1385	0.1506	0.0203	2.1362	0.2777
P9	313	1.5629	4.1364	0.1012	0.1886	2.1542	0.2907	0.8962	0.1435
P9	315	0.0653	0.0114	0.0289	0.0189	0.0744	0.01	0.0452	0.0301
P9	372	1.9818	0.9688	0.4971	0.086	2.1542	0.2907	1.7268	0.3651
P9	296	0.2293	0.1106	0.9629	0.1218	0.1506	0.0203	1.979	0.2449
P9	311	0.2329	0.108	0.6967	0.069	0.1506	0.0203	1.3992	0.144
P9	133	0.9961	1.7325	0.0269	0.0497	0.0744	0.01	0.0497	0.0925
P8	384	1.0841	1.187	0.5194	0.0694	0.1959	0.0252	0.9766	0.1658
P8	385	1.2784	3.09	0.2031	0.0722	0.1959	0.0252	0.4335	0.1317
P8	388	0.9012	2.2314	0.9429	0.095	0.1959	0.0252	1.7215	0.2123
P8	389	3.2643	6.8131	1.6255	0.212	2.8011	0.3602	2.0629	0.5928
P8	391	1.141	2.2406	0.028	0.0182	0.0967	0.0124	0.05	0.0341
P8	405	4.0231	1.0974	2.3506	0.2204	2.8011	0.3602	4.273	0.6342
P8	386	0.5797	7.1445	0.9088	0.0891	0.1959	0.0252	1.6475	0.1996
P8	387	0.601	2.9384	0.4836	0.0783	0.1959	0.0252	0.8893	0.1524
P7	316	1.4586	1.3561	0.0629	0.0415	0.0967	0.0124	0.1124	0.0749
P7	330	2.1193	9.8647	0.0687	0.6657	0.0967	0.552	0.11	0.5511
P7	79	1.7931	3.0456	2.4289	1.3191	1.9708	0.552	1.1586	0.4075
P7	80	2.0538	17.354	1.5357	0.4744	1.9708	0.552	0.7756	1.3966
P7	83	2.2307	14.1069	4.9696	0.9282	1.9708	0.552	7.4228	0.8212
P7	84	7.3327	2.698	2.0485	0.079	1.9708	0.0191	2.8046	0.1502

Dianta	Columna	P (MO)	P (DPV)	V2 (MO)	V2 (DPV)	T (MO)	T (DPV)	M3 (MO)	M3 (DPV)
Planta	Columna	tonf	tonf	tonf	tonf	tonf-m	tonf-m	tonf-m	tonf-m
P7	86	3.0047	8.827	0.0765	0.5952	0.068	0.552	0.1648	0.6653
P7	108	6.1315	7.5339	1.7663	0.4695	1.9708	0.552	3.3557	1.3461
P7	81	3.4476	2.8554	4.936	1.2302	1.9708	0.552	7.2933	0.9369
P6	82	3.2916	5.6578	3.469	0.0906	1.9708	0.0191	5.7462	0.1815
P6	314	6.0642	11.5325	0.1016	2.4346	0.068	1.8376	0.2087	6.1784
P6	319	5.0759	9.9856	0.0348	2.8248	0.068	1.8376	0.129	9.094
P6	123	2.8209	16.4063	4.3066	4.9999	1.5588	1.8326	3.9858	7.4167
P6	124	12.0321	14.8534	3.1964	6.6381	1.5649	1.8376	7.4057	14.5407
P6	125	6.6428	2.7984	4.5529	1.1123	1.5649	1.8376	5.5432	4.1673
P6	137	2.3438	2.457	4.6428	1.236	1.5649	1.8376	5.4101	4.0421
P6	148	12.3902	9.2794	2.1872	3.6521	1.5649	1.8376	3.9924	8.5201
P6	121	3.8708	18.2508	4.4886	4.5438	1.6501	1.8319	3.9553	7.1812
P5	122	8.4103	9.4253	2.2737	4.525	1.5649	1.8376	4.6868	10.6076
P5	159	7.7989	14.8257	2.0233	2.3999	1.8711	2.7848	4.0637	5.3781
P5	160	8.0876	10.9575	2.1388	4.1885	1.8711	2.7848	3.8277	7.835
P5	163	8.168	20.088	8.2558	6.6151	1.8694	2.7859	7.4124	5.4518
P5	164	15.5222	17.6039	2.2477	2.6616	1.8643	2.756	4.2354	7.1366
P5	165	13.3318	7.6065	2.6512	3.6619	1.8711	2.7848	4.7429	6.8679
P5	177	5.4256	7.6221	1.8421	2.8992	1.8711	2.7848	4.5151	6.5339
P5	188	18.3163	10.304	1.7154	2.1736	1.8609	2.7375	3.506	4.9612
P5	161	11.2935	21.8332	7.5281	5.7395	1.8808	2.7665	6.3779	6.7506
P5	162	12.6535	10.4263	2.9244	5.4266	1.8711	2.7848	5.0039	9.8203
P5	274	0.1259	0.1294	0.1763	0.1504	0.1491	0.2968	0.0244	0.0286

Dianta	Columna	P (MO)	P (DPV)	V2 (MO)	V2 (DPV)	T (MO)	T (DPV)	M3 (MO)	M3 (DPV)
Planta	Columna	tonf	tonf	tonf	tonf	tonf-m	tonf-m	tonf-m	tonf-m
P5	275	0.0765	0.1053	0.1752	0.1895	0.1524	0.3028	0.0241	0.0177
P5	26	0.1796	0.1266	0.2427	0.463	0.1722	0.3425	0.0269	0.0515
P5	54	0.0076	0.0133	0.3162	0.4619	0.1746	0.3469	0.0378	0.0571
P5	100	0.0079	0.0071	0.325	0.4987	0.1701	0.3382	0.0352	0.0544
P4	102	0.0285	0.0334	0.3796	0.4614	0.1687	0.3359	0.0471	0.0594
P4	199	10.486	19.0447	4.6807	4.9747	2.079	3.119	4.19	4.5174
P4	200	11.4139	12.8119	3.9577	5.8448	2.079	3.119	2.5417	3.7519
P4	203	13.8203	20.0528	7.5848	7.5633	2.079	3.119	7.6764	7.5626
P4	204	19.3968	21.1881	4.4526	6.0415	2.0706	3.0854	3.2343	4.9492
P4	205	20.0051	13.3486	7.3408	6.6912	2.079	3.119	8.0416	7.7653
P4	217	9.3969	14.115	5.7468	5.2104	2.079	3.119	5.5834	5.4788
P4	228	26.6493	17.4267	4.5652	4.942	2.0673	3.0665	3.9781	4.303
P4	201	18.6709	27.9816	4.2006	4.5067	2.079	3.119	5.9114	5.8169
P4	219	0.0067	0.0082	0.3548	0.6094	0.1986	0.4019	0.0385	0.0665
P3	232	0.0278	0.042	0.3564	0.5583	0.1969	0.3992	0.0449	0.0722
P3	239	12.3942	22.5237	2.2672	2.4234	2.4811	3.4541	4.1666	3.7955
P3	240	14.3499	15.1812	2.2452	2.4075	2.4811	3.4541	4.1297	3.7703
P3	243	14.4647	19.8204	2.4542	2.5756	2.4811	3.4541	2.2865	3.228
P3	244	33.2528	38.1111	0.8386	1.3502	2.4811	3.4541	2.5736	2.7514
P3	245	26.9769	20.0907	0.7046	1.295	3.2981	4.5915	2.037	2.1049
P3	246	3.6015	3.4703	2.8843	3.8831	2.4811	3.4541	2.8623	3.7949
P3	257	12.3817	19.7866	2.2886	2.1139	3.2981	4.5915	2.2089	2.9628
P3	268	32.1581	23.2106	0.9534	1.2422	2.4811	3.4541	2.5874	3.6876

Planta	Columna	P (MO)	P (DPV)	V2 (MO)	V2 (DPV)	T (MO)	T (DPV)	M3 (MO)	M3 (DPV)
		tonf	tonf	tonf	tonf	tonf-m	tonf-m	tonf-m	tonf-m
P3	241	18.9259	28.2216	19.9554	19.0105	2.5692	3.219	2.0591	3.068
P2	242	15.5879	11.6032	5.1645	6.2055	2.7429	3.6533	3.9565	5
P2	279	13.5445	25.1137	3.7164	5.8967	2.3916	3.2135	1.9027	2.0246
P2	280	16.8566	17.4295	3.7548	5.9748	2.3402	3.1096	1.9164	2.0385
P2	283	26.8718	32.3131	2.8208	2.6331	2.3229	3.0762	1.5045	2.202
P2	284	48.9409	54.9901	3.2578	5.342	2.3229	3.0762	0.9233	1.125
P2	285	31.1521	24.7525	0.4707	0.7182	3.0878	4.0891	0.6418	1.0077
P2	286	6.9241	6.7316	1.9448	2.6864	2.3229	3.0762	2.6458	3.7205
P2	297	14.9729	24.7359	2.8283	2.873	3.0878	4.0891	1.3879	1.8163
P2	281	31.6468	41.8105	20.3914	19.6255	2.4578	3.0543	6.727	6.7065
P1	282	20.5597	22.2496	5.8094	8.7502	2.455	3.3235	8.0261	12.2336
P1	2	14.9144	28.2291	3.723	3.6601	1.5701	1.8271	2.7331	5.0911
P1	3	20.2886	21.3279	3.7306	3.6706	1.5701	1.8271	2.7229	5.0427
P1	6	55.5664	57.0386	1.9714	3.4786	1.5701	1.8271	4.324	6.3216
P1	7	75.8578	94.6132	2.1091	2.2884	1.5701	1.8271	5.3506	6.9919
P1	8	34.9781	29.2551	1.9865	2.2171	2.0871	2.4288	0.9295	0.9559
P1	10	9.5803	9.4599	1.9922	2.5031	1.5701	1.8271	5.2797	8.0027
P1	42	16.1987	26.8584	2.5494	3.7469	2.0871	2.4288	3.5533	4.5857
P1	63	40.2254	31.6881	1.2548	2.5756	1.5701	1.8271	4.2623	6.284
P1	4	40.679	50.7056	2.3891	3.8238	1.5701	1.8271	3.3621	5.9187
P1	30	25.2871	32.8567	4.7818	7.1508	1.6456	1.9266	9.4878	14.5392

 Tabla XLVI Valores de Fuerza axial, fuerza cortante, torsión y momento en la estructura original y estructura con disipadores viscoelásticos – Sismo en la dirección X

 Fuente:
 Etabs 2015 versión 15.2.0.
 Archivo: TORRE4V6-DPV.EDB

Las columnas marcadas representan el mayor incremento de la fuerza axial en los elementos, aquellas columnas que deberán ser revisadas en cuanto a su capacidad y su carga última según lo establecido por del código AISC 360-05 mediante el procedimiento mostrado anteriormente. Se obtiene:

(Columna P7-80		Columna P1-7						
Solicitaciones del elemento									
Pu	17.354	ton	Pu	94.6132	ton				
Mux	2.9283	ton-m	Mux	6.9919	ton-m				
Muy	2.999	ton-m	Muy	13.7898	ton-m				
	Р	ropiedade	s Geométricas						
L	4680	mm	L	4390	mm				
h	400	mm	h	450	mm				
b	400	mm	b	400	mm				
Fy	35.1632	kg/mm2	Fy	35.1632	kg/mm2				
Fc	2.813056	kg/mm2	Fc	2.813056	kg/mm2				
Es	20389.02	kg/mm2	Es	20389.02	kg/mm2				
ls	1844224	mm4	ls	421611872	mm4				
Ec	2154.29	kg/mm2	Ec	2154.29	kg/mm2				
lc	1811939328	mm4	lc	2615888128	mm4				
As	12544	mm2	As	13344	mm2				
Ac	147456	mm2	Ac	166656	mm2				
Resultados									
C3	0.7568		C3	0.7483					
C2	0.85		C2	0.85					
Eleff	2.99173E+12		Eleff	1.2813E+13					
Po	793.6688685	ton	Po	867.7085024	ton				
Pe	1346.758145	ton	Pe	6555.137378	ton				
0.44Po	349.2143021		0.44Po	381.7917411					
Pe>0.44Po	OK		Pe>0.44Po	OK					
Pn	620.1783278	ton	Pn	820.9416252	ton				
φPn	465.1337458	ton	φPn	615.7062189	ton				
Pu/φPn	0.037309699		Pu/φPn	0.153666143					
Mnx	64.84881736	ton-m	Mnx	14825.22258	ton-m				
Mny	64.84881736	ton-m	Mny	12382.05531	ton-m				
φbMnx	58.36393562	ton-m	φbMnx	13342.70032	ton-m				
φbMny	58.36393562	ton-m	φbMny	11143.84978	ton-m				
Ca	rga Axial Pequeña		Carga Axial Pequeña						
а	0.115548716	OK	а	0.059386264	OK				

 Tabla XLVII Comprobación de capacidad portante de columnas de la estructura con disipadores viscoelásticos

Fuente: Autores

Siendo *a* el valor de $\frac{Pu}{\phi P_n} + \left(\frac{M_{ux}}{\phi_b M_{nx}} + \frac{M_{uy}}{\phi_b M_{ny}}\right)$ que se comprueba que para ambos casos es menor a 1, es decir las columnas son capaces de soportar la flexocompresión que se ejerce en ellas frente a la carga sísmica.

CAPÍTULO 5

5. DISCUSIÓN DE ALTERNATIVAS DE PROTECCIÓN SÍSMICA PLANTEADAS Y SELECCIÓN DE MÉTODO

En el siguiente capítulo se realizará la comparación de los métodos planteados según los resultados obtenidos de los modelos generados mediante el software ETABS v2015, las ventajas de cada método, así como las restricciones que se presentan para cada uno de ellos. Finalmente se seleccionará un método de protección sísmica para la estructura en cuestión mediante el análisis multicriterio "método del scoring" el cual permitirá evaluar las propuestas según la ponderación que se considere adecuada para cada criterio de selección.

5.1. Análisis comparativo entre métodos planteados.

Para evaluar el desempeño estructural de los métodos planteados se realiza la comparación de los resultados obtenidos en el capítulo 4, los desplazamientos generados por los sismos tanto en la dirección X como en la dirección Y según los valores obtenidos por cada modelo.

En cada uno de los métodos se obtuvo una disminución en los desplazamientos máximos y las distorsiones máximas de los pisos superiores, sin embargo, se obtuvo un aumento en los pisos inferiores de la estructura. Se calculó el porcentaje

de reducción de desplazamientos debido al sismo tanto en X como en Y, los cuales se muestran en las tablas XLV y XLVI.

De igual manera se obtuvieron los valores de las derivas generadas en cada entrepiso y se realiza la comparación de las alternativas planteadas, tomando en cuenta que la norma NEC-2015 estipula un valor determinado para la deriva máxima como fue explicado en el capítulo 3.

Planta	Elevación (m)	Modelo Original		ASB		DPH		DPV	
				Porcentaje de reducción					
		Х	Y	X	Y	X	Y	Х	Y
		mm	mm	%	%	%	%	%	%
P9	31.5	91.1	73	56.97%	35.21%	43.80%	20.14%	47.31%	23.70%
P8	27.73	76.1	61.6	50.72%	24.03%	34.69%	6.66%	39.68%	11.36%
P7	23.98	59.1	50	39.76%	7.60%	19.46%	-	25.38%	-
P6	19.3	53.4	39.9	28.28%	-	-	-	8.43%	-
P5	16.6	45	32.1	17.33%	-	-	-	4.00%	-
P4	13.72	43.2	26	5.56%	-	-	-	-	-
P3	10.87	31.2	21.5	-	-	-	-	-	-
P2	7.63	19	14.1	-	-	-	-	-	-
P1	4.39	6.4	6.9	-	-	-	-	-	-
BASE	0	0	0	-	-	-	-	-	-

Tabla XLVIII Comparación de porcentajes de reducción de desplazamientos con métodos planteados - Sismo en X

Fuente: Autores
			AS	SB	DF	ъН	DI	۶V		
Planta	Elevación	Elevación		Derivas máximas de entrepiso						
Flanta	(m)	х	Y	x	Y	х	Y	х	Y	
P9	31.5	0.004	0.004	0,000405	0,000453	0.005033	0.004513	0.000693	0.000731	
P8	27.73	0.005	0.004	0,000474	0,00058	0.005053	0.004542	0.00081	0.000827	
P7	23.98	0.004	0.003	0,000435	0,000391	0.003682	0.003025	0.001094	0.00096	
P6	19.3	0.004	0.002	0,000373	0,000282	0.002014	0.001992	0.002306	0.002091	
P5	16.6	0.004	0.002	0,000406	0,00037	0.002847	0.002903	0.003345	0.00314	
P4	13.72	0.004	0.002	0,000508	0,000403	0.003897	0.003382	0.004129	0.003576	
P3	10.87	0.004	0.002	0,00049	0,000369	0.003861	0.003471	0.003849	0.003138	
P2	7.63	0.003	0.002	0,000411	0,000402	0.00299	0.002977	0.002681	0.00284	
P1	4.39	0.001	0.002	0,000467	0,003568	0.001921	0.001921	0.001594	0.001833	
BASE	0	0	0	0	0	0	0	0	0	

 Tabla XLIX
 Comparación de derivas máximas de entrepiso según métodos planteados – Sismo en X

		Madala	Original	AS	B	DPI	H	DF	v
	Elevación	WOUEIO	Original	Porcentaje de reducción					
Planta	(m)	Х	Y	X	Y	Х	Y	Х	Y
		mm	mm	%	%	%	%	%	%
P9	31.5	91.1	73	67.51%	42.47%	58.49%	19.70%	54.72%	43.87%
P8	27.73	76.1	61.6	62.81%	32.79%	48.17%	8.76%	46.79%	27.93%
P7	23.98	59.1	50	54.48%	18.40%	44.29%	0.00%	46.19%	5.73%
P6	19.3	53.4	39.9	39.89%		40.31%	2.09%	16.33%	5.50%
P5	16.6	45	32.1	30.44%		40.00%	1.28%	14.12%	3.19%
P4	13.72	43.2	26	14.58%		41.35%	2.14%	0.00%	7.69%
P3	10.87	31.2	21.5			45.28%	4.88%	0.00%	23.78%
P2	7.63	19	14.1			58.11%	5.10%	12.16%	31.63%
P1	4.39	6.4	6.9			57.14%	6.82%	17.86%	27.27%
BASE	0	0	0						

Tabla L Comparación de porcentajes de reducción de desplazamientos con métodos planteados - Sismo en Y

	Modelo Original		ASB DPH		DPV				
Elevación				Derivas máximas de entrepiso					
Flanta	(m)	x	Y	x	Y	x	Y	x	Y
P9	31.5	0.001	0.006	0,000295	0,00043	0.000993	0.002864	0.00041	0.000804
P8	27.73	0.002	0.007	0,000345	0,000559	0.001019	0.003559	0.000426	0.001031
P7	23.98	0.001	0.001	0,000309	0,000394	0.00084	0.002526	0.000398	0.001339
P6	19.3	0.001	0.001	0,000283	0,000329	0.000602	0.00195	0.000792	0.002205
P5	16.6	0.002	0.002	0,000317	0,000383	0.000936	0.002582	0.001098	0.003059
P4	13.72	0.002	0.002	0,000439	0,00043	0.000952	0.002751	0.00166	0.003278
P3	10.87	0.001	0.001	0,000443	0,000385	0.000923	0.001799	0.001411	0.001971
P2	7.63	0.001	0.001	0,000373	0,000401	0.000734	0.00153	0.00086	0.00116
P1	4.39	0.001	0.001	0,000468	0,003913	0.000273	0.000897	0.000521	0.000729
BASE	0	0	0	0	0	0	0	0	0

Tabla LI Comparación de derivas máximas de entrepiso según métodos planteados - Sismo en Y

De la tabla XLVIII se observa que el máximo porcentaje de reducción de desplazamientos por efectos del sismo en la dirección X se obtiene con el método de aislamiento sísmico basal con un 56.97%, de igual forma, se obtiene un alto porcentaje para los métodos de disipación pasiva.

En el caso del sismo en la dirección Y se observa el correcto desempeño de los disipadores pasivos, tanto histeréticos como viscoelásticos, altos porcentajes de reducción de los desplazamientos generados, frente al modelo original y en la mayoría de pisos, sin embargo, el uso de los disipadores histeréticos presenta mayores porcentajes de reducción debido a que estos dispositivos se comportan mejor en estructuras flexibles, mientras que los disipadores viscoelásticos en estructuras más rígidas.

Se advierte que este comportamiento presentado frente al sismo en Y depende en gran parte en la disposición de los mismos, las riostras deberán ser colocadas en la estructura de manera que se obtenga la mayor eficiencia de los métodos, como se obtuvo para la dirección Y.

En las tablas L y LI se detallan los valores de las derivas de entre piso, pese al aumento del valor de las derivas en los entrepisos inferiores por efectos de los métodos de protección sísmica planteados, se observa que los valores cumplen con el valor máximo permitido según la NEC en su Capítulo "Peligro Sísmico", valor detallado en la sección 3.3.4 del presente trabajo.

5.2. Ventajas

5.2.1. Ventajas Disipadores de aislamiento sísmico basal

Como ventaja principal para este tipo de sistemas se puede indicar la modificación del periodo de la estructura de tal manera que experimente valores de aceleraciones espectrales menores a las que experimentaría la estructura empotrada.

Esto resulta en una reducción de esfuerzos en los elementos estructurales de tal manera que no estén sujetos a efectos contraproducentes en su desempeño, por otro lado, el sistema de aislación es el que tomaría la mayor parte de energía proveniente del sismo y el primer mecanismo en disiparlo hacia la cimentación y posteriormente al terreno de fundación.

Para determinar la efectividad del sistema de aislación se debe garantizar la menor magnitud de cortante basal en los entrepisos, puesto que esto aminora los esfuerzos en los elementos estructurales, consecuentemente implica reducción en los valores de los diagramas de momentos y diagrama de cortante de cada elemento. Esto se cumplió en el diseño del aislador elastomérico, puesto que presenta valores de cortante basal de entrepiso bajos.

El diseño del aislador estuvo sujeto a resistir cargas máximas y mínimas verticales, logrando así una capacidad para soportar cargas de servicio durante su vida útil, de tal manera que se eviten las vibraciones en la estructura. Cuando se tienen estructuras muy altas con elementos muy esbeltos, el aislador sísmico de base es la primera opción puesto que proporciona un periodo a la edificación mucho mayor al obtenido si estuviera empotrado, tal es el caso del edificio de Oakland City Hall en California, cuya construcción de 18 pisos se encuentra aislada mediante estos dispositivos.

Su fácil instalación hace de este sistema un ahorro significativo en lo que respecta a mano de obra y materiales, cada aislador posee placas de anclaje que son las que permiten la conexión entre la subestructura y la superestructura. La instalación de estos dispositivos debe ir de la mano con un buen trabajo de topografía y altimetría para corroborar los niveles y coordenadas requeridas para el ensamblaje correcto de estos artefactos.

Si existiera un desnivel exagerado se producirían cargas excéntricas sobre el aislador, lo que impediría su buen desempeño y rápido deterioro.

Respecto al análisis de los desplazamientos obtenidos, se lograron porcentajes de reducción del orden de 67% para un sismo en dirección Y comparado a los desplazamientos obtenidos por el modelo original, resaltando la efectividad del sistema de aislación.

5.2.2. Ventajas disipadores pasivos histeréticos

Las riostras colocadas en la estructura como disipadores de energía lograron controlar las derivas, proporcionar rigidez adicional al sistema y mejorar el desempeño estructural, con lo que se otorga una protección adicional a la estructura, además son capaces de soportar ciclos de carga reversibles de tracción y compresión sin perder rigidez ni resistencia.

Se reportaron reducciones de hasta del 58.49 % en desplazamientos, lo que sugiere una protección controlada de la estructura principal, esto se atribuye básicamente al aumento de rigidez del sistema dado por las riostras modeladas.

El uso de estos disipadores histeréticos metálicos logrará también evitar pequeñas e incómodas vibraciones ocasionadas por vientos o el paso continuo de personas que asistan a los eventos deportivos, de manera que no afecten el confort de los usuarios.

El modelamiento de estos elementos es simple con la ayuda de algún software, para este caso se empleó el software de ETABS para análisis estructural de sistemas en tres dimensiones.

Los dispositivos son de fácil manejo y puesto en obra, sus materiales que en su mayor parte corresponde al acero A36 son accesibles para nuestra región.

El precio de cada dispositivo es en función a su diseño estructural, esto le da cierta flexibilidad al analista y diseñador para definir la mejor opción en cuanto a la economía y alto desempeño estructural.

Las riostras disipan parte o totalidad de la energía impuesta por el sismo lo que localiza el daño estructural en ellas y disminuye las reparaciones post-sismo sin afectar el funcionamiento continuo de la edificación y con ello las pérdidas económicas que se puedan presentar.

Este mecanismo requiere poco mantenimiento y posee una alta resistencia a factores ambientales y variaciones de temperatura dentro de los rangos de operación usuales.

5.2.3. Ventajas disipadores pasivos viscoelásticos

Mediante la implementación de los disipadores pasivos viscoelásticos se reportó una reducción máxima del 54.72% en los desplazamientos por efectos del sismo.

La instalación de estos dispositivos se realiza de varias maneras, ya sea colocando los amortiguadores horizontalmente, como una diagonal inclinada o en la base del edificio trabajando en conjunto con el sistema de aislamiento basal, esto proporciona al diseñador y analista libertad en cuanto a la disposición de los mismos de manera que no interfieran en la estética de la edificación y no bloquee los accesos a esta, particularidad importante para la estructura en cuestión. Los disipadores modifican la propiedad dinámica de amortiguamiento del sistema estructural, de modo que las vibraciones inducidas por la excitación son absorbidas por estos dispositivos.

El modelamiento de estos dispositivos es sencillo y se logra mediante software ETABS v2015, que permite ingresar factores que detallen las propiedades de los amortiguadores según la elección de los mismo.

Son de fácil colocación y puesta en obra al igual que los disipadores pasivos histeréticos antes mencionados.

5.3. Restricciones

5.3.1. Restricciones en el análisis de implementación del método de aislamiento sísmico de base.

En cuanto a restricciones técnicas se presentaron los siguientes puntos:

1.- Desplazamiento máximo de 350mm en direcciones X e Y, debido a que dicha medida corresponde a la junta de construcción respecto a las otras edificaciones.

2.- Al tener elementos esbeltos en los últimos 3 pisos se debe evitar el efecto de golpeteo e impedir que los elementos estructurales colapsen, lo que reduce aún más las derivas en los pisos superiores, tratando de ser menores a 0,012.

En cuanto a restricciones económicas se presentaron los siguientes puntos:

1.- El costo del proyecto de aislación junto con la estructura de la torre 4 no deben exceder el presupuesto de la torre más cara del Estadio Capwell.

 Realizar el diseño de un aislador de alto amortiguamiento y observar su desempeño sin tomar en cuenta núcleos de plomo.

En cuanto a restricciones ambientales se presentaron los siguientes puntos:

1.- Evitar el uso de plomo en los aisladores puesto que es un elemento contaminante y de difícil tratamiento si afecta al medio circundante.

2.- Emplear alternativas que generen el menor impacto ambiental en sus procesos de fabricación, instalación, funcionamiento y reemplazo en caso de ser necesario.

5.3.2. Restricciones en el análisis de implementación de disipadores pasivos histeréticos.

En cuanto a restricciones técnicas se presentaron los siguientes puntos:

1.- Evitar el uso de conexiones soldadas, puesto que son elementos metálicos se debe emplear algún mecanismo de conexión diferente al uso de soldaduras.

2.- Evitar el pandeo flexionante en el elemento a usarse como disipador histerético, se debe garantizar que sea una sección compacta y no esbelta, además de corroborar que la carga axial transmitida a las columnas esté dentro de la capacidad de este último elemento estructural.

3.- Se debe respetar el diseño arquitectónico ante cualquier circunstancia, por lo tanto, se restringirá la colocación de cualquier sistema pasivo como diagonales que afecten la visibilidad del campo de juego y del interior del Estadio.

En cuanto a restricciones económicas se presentaron los siguientes puntos:

1.- El costo del sistema de disipadores pasivos histeréticos junto con la estructura de la torre 4 no deben exceder el presupuesto de la torre más cara del Estadio Capwell.

2.- Utilizar el mismo material que predomina en los elementos principales de la estructura metálica torre 4 con el objetivo de mantener los mismos costos para los elementos.

5.3.3. Restricciones en el análisis de implementación de disipadores pasivos viscoelásticos.

En cuanto a restricciones ambientales se presentaron los siguientes puntos:

1.- Emplear fluidos viscoelásticos que generen el menor impacto ambiental en sus procesos de instalación, funcionamiento y reemplazo en caso de ser necesario.

En cuanto a restricciones económicas se presentaron los siguientes puntos:

 El costo del sistema de disipadores pasivos viscoelásticos junto con la estructura de la torre 4 no deben exceder el presupuesto de la torre más cara del Estadio Capwell.

En cuanto a restricciones técnicas se presentaron los siguientes puntos:

1.- Se debe considerar de manera específica la ubicación de este tipo de disipadores, puesto que al estar compuesto de caucho estos se ven muy afectado a los cambios térmicos y su comportamiento es diferente según la temperatura en que se encuentra operando, creando o no inestabilidad en el pórtico estructural.

5.3.4. Restricciones en el análisis de implementación de sistemas activos.

Básicamente los sistemas activos requieren de una fuente de energía para funcionar ante la presencia de un sismo o simplemente de vibraciones, son recomendadas para edificaciones que alberguen gran cantidad de espectadores, sin embargo, es un sistema muy costoso que requiere de la instalación de sensores en distintas ubicaciones las cuales comenzarán a actuar cuando el sistema registre una actividad exagerada de vibración. Se tiene una restricción económica para optar por este sistema, también se debe destacar que las fuentes de energía no son continuas por la zona de estudio, regularmente realizan cortes eléctricos para mantenimiento, por lo tanto, no se puede garantizar el correcto uso de este sistema.

Otro tipo de restricción implica el uso de softwares que aún no poseen la habilidad para simular el desempeño de una estructura en conjunto con un sistema activo de disipación.

5.3.5. Restricciones en el análisis de implementación de muro de corte.

Las edificaciones altas de muros estructurales presentan deformaciones excesivas debido a su flexibilidad y al comportamiento dominado generalmente por flexión, existe la restricción técnica de que el centro de masa de la estructura debe coincidir con el centro de gravedad, con esto se asegura que la edificación no presentará problemas de torsión.

El costo de las cimentaciones para edificaciones altas de sistemas de muros portantes puede resultar elevado en muchos casos. Opción que deberá ser descartada debido a que la cimentación ya está construida y además se cuenta con la restricción de que no se debe exceder el presupuesto de la torre más cara del Estadio Capwell.

Una restricción del tipo técnica también corresponde a que se deben respetar los diseños arquitectónicos, al ser una estructura que poseerá suites debe asegurar una

buena visibilidad hacia el campo de juego y el interior del Estadio, por lo tanto, se limitaría la ubicación de muros en zonas que no garantizan la rigidez equitativa en todos los pisos de la edificación, generando un problema más para su diseño.

5.4. Análisis multicriterio – método del scoring

Con el fin de seleccionar el método que resulte idóneo para la estructura en cuestión, y según los resultados obtenidos en base a los modelos generados, ventajas y restricciones para cada sistema, se implementa el método del scoring que permite identificar la alternativa preferente en base a multicriterios planteados para la discusión.

Los criterios de selección se muestran en la tabla LIII y se asigna una ponderación w_i para cada uno de ellos mediante una escala de 5 puntos siendo 1 muy poco importante y 5 altamente importante.

De acuerdo al grado de satisfacción que logre cumplir cada uno de los métodos planteados según el criterio analizado, se establece una calificación r_i empleando una escala de 9 puntos, siendo 1 el incumplimiento absoluto del criterio y 9 el cumplimiento del mismo, valores en el rango del 1 al 9 se aceptan para denotación del cumplimiento parcial del criterio analizado.

Se calcula el puntaje S para cada método mediante:

$$S = \sum w_i * r_i$$

La alternativa con el puntaje más alto representa la alternativa que será seleccionada.

Mediante la matriz de scoring dispuesta en los anexos, se evaluaron los tres métodos planteados, la ponderación numérica fue realizada subjetivamente luego de un análisis comparativo entre los métodos. Bajo las calificaciones realizadas, se determina que en aspecto global, con todos los parámetros estudiados como un conjunto, el sistema de disipación de energía sísmica más óptimo es el uso de los disipadores pasivos histeréticos según el puntaje que se obtuvo con el análisis multicriterio. Ver Anexo 2

CAPÍTULO 6

6. ALTERNATIVA DE PROTECCIÓN SÍSMICA SELECCIONADA

En el capítulo 4 se estudió el desempeño de tres métodos de protección sismo resistente para la estructura en cuestión y se continuó con la elección de uno de ellos para establecer como propuesta final para el desarrollo del presente trabajo mediante el capítulo 5.

El método de disipación de energía sísmica seleccionado corresponde a los disipadores pasivos histeréticos por su versatilidad, beneficios y acoplamiento con las condiciones de nuestro país.

6.1. Detalles técnicos

La configuración en la estructura de los dispositivos se dispuso de forma que no se comprometa de manera significativa el aspecto arquitectónico de la torre, se conectan directamente las riostras de pandeo restringido a las columnas del piso inferior con las vigas del piso superior de manera que se logre controlar el desplazamiento relativo del entrepiso, este tipo de conexión es la más utilizada ya que presenta la mayor eficiencia y control de la respuesta estructural. La conexión propuesta es de placas empernadas, las cuales deberán permanecer rígidas y elásticas.

Los esfuerzos estructurales producidos por mecanismos de flexión, cortante, torsión o fuerza axial producen la fluencia del metal y con ello la disipación de energía, las riostras de pandeo restringido deberán ser seleccionadas y sus conexiones diseñadas de manera que logre soportar los esfuerzos inducidos al mecanismo, se pueden llegar a diseñar dispositivos en una variedad de formas y configuraciones.

A continuación se propone un tipo de disipador por fluencia y detalle de conexión a las vigas y columnas. Se debe considerar que el diseño deberá ser ensayado y estudiado previo a su diseño y aceptación final.

Figura 6.1 Detalle de colocación de disipadores pasivos histeréticos Fuente: Autores

6.2. Diseño del sistema disipador pasivo histerético

La norma "Seismic Provisions for Structural Steel Buildings" del American Institute of Steel Construction, ANSI/AISC 341-10, detalla requerimientos para el diseño de riostras tipo V invertida que deberá cumplir su diseño de manera que se logre la mayor productividad y seguridad del método.

Las vigas de tipo en V invertida y de tipo V serán conexiones empernadas lejos de la conexión viga-columna y deberá satisfacer con los siguientes requisitos:

- La fuerza requerida se determina en base a las combinaciones de carga según el código de construcción con el supuesto de que las riostras no aportan resistencia de cargas muertas y cargas vivas. y en base a las combinaciones de carga que incluyen los efectos de las cargas impuestas por el sismo.
 - La resistencia nominal de las riostras en tensión, se entenderá que será la menor de los siguientes:
 - (A) El límite de elasticidad esperada de la abrazadera de la tensión, ØFyAg
 - (B) El efecto de carga en base a la carga sísmica amplificada
 - (C) La fuerza máxima que puede ser desarrollada por el sistema

• Las fuerzas de compresión en los apoyos se supone que son iguales a 0.3Pn.

Del modelo, y combinaciones más críticas, incluyendo la evolvente de las combinaciones y primeros dos modos de vibración de la estructura se obtienen:

	Solicitación elementos					
Tu	(1.4D)	1.0581	ton			
	(1.2D+1.6L)	1.1108	ton			
	ENV	10.2478	ton			
	SPC X	7.3044	ton			
	SPC Y	6.5760	ton			
	MODAL 1	19.9811	ton			
	MODAL 2	40.4894	ton			
Tu MAX		40.4894	ton			

Tabla LII Tabla de solicitación de elementos para el diseño

Fuente: Autores

De manera que se empleará para el diseño la siguiente carga última definida por el modo 2 de vibración de la estructura.

6.2.1. Elementos a tensión

6.2.1.1 Estados límites de fluencia y fractura

Las conexiones para los elementos que conforman los dispositivos disipadores se diseñan en base a dos estados límites, fluencia y fractura, cuya resistencia nominal varía de acuerdo a las propiedades geométricas de las conexiones y factor que de acuerdo al estado que se evalúe.

La AISC define la resistencia nominal se define como:

Fluencia: Tn= Fy.Ag

Fractura: Tn= Fu.Ae

Donde:

Tn= Resistencia nominal a la tensión

Fy= Esfuerzo de Fluencia

Fu= Resistencia mínima a la tensión (Esfuerzo Último)

Ag = Área total o gruesa

Ae= Área neta efectiva

Ae = U. An

An= Área neta

U= coeficiente de reducción (factor de eficiencia)

El área neta según el número de pernos, diámetro, distancia de separación entre pernos y espesor t de las placas, se define como:

$$A_n = \left[W_g - n(d+c) + \sum \frac{s^2}{4g} \right] * t$$

Donde:

g = espaciamiento transversal (gramil) de los pernos.

s = espaciamiento longitudinal (paso) entre 2 pernos cualesquiera.

El valor U, factor de rezago de cortante se extrae de la Tabla D3.1 de la AISC, dicho valor considera que hay una zona de transición en la cual los esfuerzos no se distribuyen uniformemente, puesto que en las zonas cernas a los orificios de los pernos se encuentra la concentración de esfuerzo que disminuye a medida que se aleja de esta zona.

El material de los elementos que conforman en disipador es el acero tipo ASTM-36, que ofrece uno de los mejores comportamientos en cuanto a la estabilidad de sus propiedades mecánicas y principalmente su punto de fluencia, lo que es un aspecto muy importante dentro del proyecto de estructuras con dispositivos de tipo histerético por deformación. (Oviedo & Duque , 2006)

Acero A36				
Fy	25.31	kg/mm2		
Fu	40.78	kg/mm2		
E 20389.02 kg/mm2				
Fuente: Autores				

Tabla LIII Propiedades del acero A36 para diseño de conexiones y elemento

Tabla LIV Valores de factor de rezago de c	cortante para cálculo de área neta
--	------------------------------------

TABLA 3.2 Factores de retraso de cortante para los conectores de los miembros a tensión.

Caso	Descripe	ión del elemento	Factor de retraso de cortante, U	Ejemplo
1	Todos los miembros a de tensión se transmit- los elementos de la sec sujetadores o soldadur 5 y 6).	tensión donde la carga e directamente a cada uno de eción transversal mediante ra (excepto en los Casos 4,	<i>U</i> = 1.0	
2	Todos los miembros a HSS, donde la carga d algunos pero no a tod transversal mediante : longitudinal en combi transversal. (En forma puede usarse el Caso usarse el Caso 8.)	tensión, excepto placas y le tensión se transmite a los lo elementos de la sección sujetadores o soldadura inación con soldadura a alterna, para W, M, S y HP, 7. Para los ángulos, puede	$U = 1 - \overline{x}/l$	
3	Todos los miembros a tensión se transmite s transversal a algunos elementos de la secció	tensión donde la carga de olamente por la soldadura pero no a todos los ón transversal.	U = 1.0 y $A_n = $ área de los elementos directamente conectados	
4	Placas donde la carga solamente por soldad	de tensión se transmite ura longitudinal.	$l \ge 2w U - 1.0$ $2w > l \ge 1.5w U - 0.87$ $1.5w > l \ge w U - 0.75$	*
5	HSS redonda con una concéntrica individual	i placa de empalme l.	$\begin{array}{l} l \geq 1.3D \dots U = 1.0 \\ D \leq l < 1.3D \dots U = 1 - \mathfrak{V}l \\ \overline{\mathfrak{x}} = D/\pi \end{array}$	
6	HSS rectangular	con una placa de empalme concéntrica individual	$l \ge H \dots U = 1 - x d$ $\overline{x} = \frac{B^2 + 2BH}{4(B + H)}$	
		con dos placas de empalme laterales	$l \ge H \dots U = 1 - \overline{x}/l$ $\overline{x} = \frac{B^2}{4(B+H)}$	
7	Perfiles W, M, S o HP o tes cortadas de estos perfiles. (Si U	con el patín conectado con 3 o más sujetadores por línea en la dirección de la carga	$b_f \ge 2/3d \dots U = 0.90$ $b_f < 2/3d \dots U = 0.85$	
	se calcula segun el Caso 2, se permite usar el valor mayor.)	con el alma conectada con 4 o más sujetadores por línea en la dirección de la carga	U = 0.70	
8	Angulos individuales y dobles (si U se calcula según el Caso	con 4 o más sujetadores por línea en la dirección de la carga	U = 0.80	
	2, se permite usar el valor mayor).	con 3 sujetadores por línea en la dirección de la carga (con menos de 3 sujetadores por línea en la dirección de la carga, use el Caso 2).	U = 0.60	
l – lo (mm) altura	ngitud de la conexión, ; B – ancho total del n total del miembro rec	plg (mm); w – ancho de placa niembro rectangular HSS, med tangular HSS, medida en el pl	a, plg (mm); \overline{x} – excentricidad de l dido a 90° con el plano de la conex lano de la conexión, plg (mm).	a conexión, plg ión, plg (mm); H –
Fuent of Ste	te: Especificación AISO el Construction. Repro	2, Tabla D3.1, p. 16.1-28, junio oducido con autorización. Tod	22, 2010. Derechos reservados © A os los derechos reservados.	American Institute

Fuente: AISC, Tabla D3.1, 2010

La filosofía para diseño de las conexiones y elementos será el diseño por factores de carga y resistencia (LRFD), basado en los estados límites del material. La resistencia teórica ò nominal es multiplicada por un factor de resistencia que es normalmente menor que la unidad. Este factor toma en cuenta las incertidumbres de resistencia de los materiales, dimensiones y la mano de obra.

$$\emptyset R_n \geq \sum \gamma_i * Q_i$$

Para miembros sujetos a fuerzas de tensión:

$$\phi_t T_n \ge T_u$$

En donde:

 $Ø_t =$ Factor de reducción de resistencia

 $\phi_t = 0.90$ (Estado límite de Fluencia)

 $Ø_t = 0.75$ (Estado límite de Fractura)

n = Resistencia nominal de un elemento a tensión

 $Ø_t T_n$ = Resistencia de diseño de un elemento a tensión

 $\phi_t T_n =$ Carga última en el miembro a tensión o resistencia requerida.

Fluencia:
$$\phi_t T_n = \phi_t F_y A_g = 0.9 F_y A_g$$

Fractura:
$$\phi_t T_n = \phi_t F_u A_e = 0.75 F_u A_e$$

La resistencia de diseño $\phi_t T_n$ es la menor de las ecuaciones.

6.2.1.2 Estado límite de bloque de cortante

Se deberá revisar también el estado límite de bloque de cortante definido por la zona de conexión del miembro, que presenta un plano de falla a cortante y uno transversal a tensión por efecto de la combinación de estos dos esfuerzos.

$$\emptyset R_{bc} = \emptyset (0.6 F_u A_{nv} + U_{bs} F_u A_{nt}) \le \emptyset (0.6 F_y A_{gv} + U_{bs} F_u A_{nt})$$

Se deberá escoger el menor término de la desigualdad.

Donde

 A_{qv} : Área total sujeta a cortante

 A_{nv} : Área neta sujeta a cortante

A_{nt} : Área neta sujeta a tensión

U_{bs}: Factor de reducción

Ø= 0.75

El valor de U_{bs} es un factor de reducción para aproximar la no uniformidad de la distribución de esfuerzos en el plano de tensión. Cuando el esfuerzo de tensión es uniforme, Ubs = 1, cuando el esfuerzo de tensión es no-uniforme, U_{bs} = 0.5.

6.2.1.3 Estado límite de aplastamiento

Adicionalmente, se revisa la resistencia al aplastamiento en función del material que se conecta, el tipo de agujero y el espaciamiento y la distancia a los bordes; es independiente del tipo de perno y la presencia o ausencia de la rosca en el área de aplastamiento.

La norma AISC-LRFD, especifica la resistencia de diseño al aplastamiento como $\emptyset R_n$ donde $\emptyset = 0.75$ y R_n es la resistencia nominal por aplastamiento y se debe chequear tanto para conexiones tipo aplastamiento como para conexiones de deslizamiento crítico y está dada por:

Para agujeros estándar, holgados y de ranura corta independientemente de la dirección de la carga o para agujeros de ranura larga con la ranura paralela a la dirección de la fuerza. a) Deformación en agujero a cargas de servicio es una consideración en diseño:

$$\emptyset R_n = \emptyset (1.2 L_c t F_u) \le \emptyset (2.4 d t F_u)$$

b) Deformación en agujero a cargas de servicio no es una consideración en diseño:

$$\emptyset R_n = \emptyset (1.5 L_c t F_u) \le \emptyset (3.0 d t F_u)$$

Para agujeros de ranura larga con la ranura perpendicular a la dirección de la fuerza

$$\emptyset R_n = \emptyset (1.0 L_c t F_u) \le \emptyset (2.0 d t F_u)$$

Donde

 F_u = Resistencia a la tensión del material de la placa (esfuerzo último)

 L_c = Distancia al borde a la largo de la línea de acción de la fuerza (desde el borde del agujero al borde de la placa o la distancia libre entre agujeros)

t = Espesor de la placa

6.2.2. Diseño de elementos a compresión

Se deberá también estudiar el desempeño de estos elementos debido a las fuerzas axiales de compresión ejercidas durante el sismo.

Se requiere inicialmente conocer el tipo de coluna de acuerdo a su relación de esbeltez, para lo cual se presentan dos casos:

a) Columnas cortas e intermedias - Intervalo inelástico

$$KL/r \le 4.71 \sqrt{E/F_y}$$
 O Fe $\ge 0.44F_y$

b) Columna larga; Pandeo elástico

$$KL/r > 4.71 \sqrt{E/F_y} \text{ O F}_{e} < 0.44F_{y}$$

De acuerdo al AISC (D1, p.26): KL/ r deberá ser inferior a 300 preferiblemente (excepto para varillas y tirantes).

Es recomendable el uso de valores de KL/ r entre 40 y 120, valores mayores a 200 indican el uso de perfiles con resistencia despreciable, valores muy pequeños dan como resultado un diseño costoso. Para elementos sometidos a compresión, la relación de esbeltez deberá ser inferior a 200.

6.2.2.1 Carga crítica de Euler

La fórmula de Euler válida solamente para columnas largas calcula la carga crítica de pandeo, carga última que puede ser soportada por columnas largas antes del colapso.

$$P_{cr} = \frac{\pi^2 EI}{Le^2}$$

Donde

P_{cr}= Carga crítica de pandeo de la columna (Carga de Euler)

E = Módulo de Elasticidad

I = Momento de Inercia

 L_e = longitud efectiva de la columna

 $L_e = KL$

El valor K, para el cálculo de la longitud efectiva de la columna, depende de los tipos de apoyos del elemento, según se muestra:

Fuente: Comentario de la Especificación, Apéndice 7 – Tabla C-A-7.1, p. 16.1-511, junio 22, 2010. American Institute of Steel Construction

Cuando $KL/r \le 4.71 \sqrt{E/F_y}$, la falla se da en el intervalo inelástico y su esfuerzo crítico se calcula con:

$$F_{cr} = \left[0.658^{\frac{F_y}{Fe}}\right] * F_y$$

Cuando $KL/r > 4.71\sqrt{E/F_y}$ la falla de la columna se presenta por pandeo elástico, cuya resistencia F_{cr} se calcula:

$$F_{cr} = 0.877 F_{e}$$

Donde F_e es el esfuerzo de pandeo elástico calculado con la fórmula de Euler

$$F_e = \frac{\pi^2 E}{(\frac{K L}{r})^2}$$

6.2.2.2 Elementos rigidizados y no rigidizados

Se deberá seleccionar perfiles que cumplan con los parámetros que aseguran que sean secciones no esbeltas y compactas de manera que no se pandeen durante su operación.

Para una sección compacta:

a) Las alas deben estar conectadas en forma continua al alma o almas.

b)
$$\lambda_f \leq \lambda_p$$
 y $\lambda_w \leq \lambda_p$

 λ_p = Parámetro de esbeltez máxima para elementos compactos.

 $\lambda_f = b/t_f$: esbeltez del ala

 $\lambda_f = h/t_w$: esbeltez del alma

	Caso	Descripción del elemento	Razón ancho- espesor	Relación límite ancho-espesor λ, (no esbelto/esbelto)	Ejemplos
	5	Almas de perfiles I y canales doblemente simétricos	h/t _w	$1.49\sqrt{\frac{E}{F_y}}$	$t_w + \frac{1}{h} + \frac{1}{h} t_w + \frac{1}{h} = \frac{1}{h}$
ados	6	Paredes de HSS rectangulares y cajones de espesor uniforme	bit	$1.40\sqrt{\frac{E}{F_y}}$	
Elementosrigidiz	7	Cubreplacas de patines y placas de diafragmas ente líneas de conectores o soldaduras	b/t	$1.40\sqrt{\frac{E}{F_y}}$	
	8	Todos los otros elementos rigidizados	b/t	$1.49\sqrt{\frac{E}{F_{\gamma}}}$	
	9	HSS redondo	D/t	$0.11 \frac{E}{F_y}$	

Tabla LVI Valores de Parámetro de esbeltez máxima λ_p para elementos compactos

Fuente: Comentario de la Especificación, Apéndice 7 – Tabla C-A-7.1, p. 16.1-511, junio 22, 2010. American Institute of Steel Construction

6.2.3. Diseño de conexiones

De acuerdo con los estados límites de fluencia y fractura, estudiados previamente, se asumen dos tipos de conexiones para los elementos metálicos, conexiones de contacto y conexiones de deslizamiento crítico.

Para las conexiones empernadas se deberá calcular la resistencia nominal de los pernos a ser utilizados y con ello el número necesario en la conexión.

La resistencia nominal de los pernos está dada por el mínimo entre:

Tensión

$$R_n = F_{ub}(0.75A_b)$$

Donde

 F_{ub} = Resistencia a la tensión del material del perno (Esfuerzo último)

 A_b = Área total del vástago del perno

Cortante

$$R_n = m A_b \left(0.625 F_{ub} \right)$$

Donde

m = número de planos de cortante

m = 1 para cortante simple y m = 2 cortante doble

• Aplastamiento en la placa

Cuando la deformación en el agujero estándar a cargas de servicio no es una consideración en el diseño, la resistencia al aplastamiento de la placa está dada por:

$$\phi R_n = \emptyset(1.5 L_c \ t \ F_u) \le \emptyset(3.0 \ d \ t \ F_u)$$

 L_c = *distancia* al borde a lo largo de la línea de acción de la fuerza (desde el borde del agujero al borde de la placa o la distancia libre entre agujeros)

t = espesor de la placa

6.2.3.1 Conexiones de contacto

La conexión de contacto entre los elementos de conexión a vigas y columnas se supone como conexiones de contacto. Se asumen placas de 8mm de espesor y el uso de pernos A325 de ³/₄", adicionalmente se asume un valor de 35 mm para Lc en base a la tabla de valores de Lc mínimo para agujeros estándar según AISC 360-05, de manera conservadora se asumen bordes cizallados. La carga última de diseño Tu fue definida al inicio de la sección 6.2, con lo que se obtiene:

Pernos de conexión					
φPernos	19.05	mm			
Ab	284.88	mm2			
Fub A325	84.00	Kg/mm2			
t placa	6.00	mm			
Lc	35.00	mm			
Eugentes Autoroo					

Tabla LVII Valores asumidos para conexiones de contacto

Se revisan los tres estados antes mencionados y se calcula el número de pernos a ser empleados en la conexión:

Tensión				
φRn	13.460	ton		
	Cortante			
φRn	8.076	ton		
Aplastamiento				
φRn	19.661	ton		
φRn	21.603	ton		
φRn min	19.661	ton		
Numero de pernos				
φRn 8.076 ton				
Nb	4	pernos		
φRn	32.3052	ton		
φRn>Tu OK				
Fuente: Autores				

Tabla LVIII Revisión de estados límites para pernos de conexiones de contacto

De manera conservadora se colocarán 4 pernos dispuestos de según las recomendaciones para conexiones empernadas descritas por el AISC 2010 sección J3. Con lo que se obtiene:

re raioroo adarmado para	alopooloion do o	
Φ Pernos	19.05	mm
t placa	6	mm
b placa	180	mm
n pernos plano de falla	2	
С	1.6	mm
S	60	mm
g	80	mm
i	45	mm
j	50	mm
Lc	35	mm
Fub A325	84	Kg/mm2
φ aplastamiento	0.75	

Tabla LIX Valores asumidos para disposición de conexión de contacto

A continuación se revisan los estados límites de fluencia, fractura y bloque de cortante para la conexión asumida:

Tu	20.24	ton		
Fluencia y	Fractura cone	kión		
Ag	1080.00	mm2		
U	1.00			
An 1	832.20	mm2		
An2	899.70	mm2		
An	832.20	mm2		
φtTn fluencia	24.601	ton		
φtTn fractura	25.453	ton		
φtTn	24.601	ton		
φtTn>Tu	ОК			
Bloque de Cortante				
Agv	660	mm2		
Anv	1136.100	mm2		
Ant	476.100	mm2		
0.6FuAnv	27.800	ton		
0.6FyAgv	10.020	ton		
φ cortante	0.75			
φRbc	22.078	ton		
φRbc φRbc>Tu	22.078 OK	ton C		

Tabla LX Revisión de estados límites para conexión de contacto

Se observa que la configuración, materiales y elementos de la conexión resisten los estados límites en base a la fuerza máxima obtenida en el modelo, por lo que se considera satisfactorio el diseño.

6.2.3.2 Conexiones de deslizamiento crítico

$$\emptyset R_{n,dc} = \emptyset \ \mu \ D_u \ h_f \ T_b \ n_s$$

Donde

Ø = 1 Para agujeros estándar y de ranura corta perpendicular a la dirección de la

carga

 μ =0.30 Coeficiente de deslizamiento promedio. Valor conservador

 D_u = 1.13 Relación entre la tensión media de ajuste y la tensión mínima

 $h_f = 1.0$ No existen placas de relleno

 T_b = Mínima tensión en pernos

 n_s = Número de pernos

TABLA J3.1 Pretensión Mínima de Pernos, ton*		
Tamaño Perno, in	Grupo A (ej. Pernos A325)	Grupo B (ej. Pernos A490)
1/2	5,44	6,80
5/ ₈	8,62	10,89
3/4	12,70	15,88
7/2	17,69	22,23
1	23,13	29,03
1 1/ _e	25,40	36,29
1 1/4	32,21	46,27
1 º/a	38,56	54,88
1 1/2	46,72	67,13
 Igual a 0,70 veces la resistencia última de los pernos, redondeada al valor entero más cercano, tal como lo especifican las Especificaciones ASTM para pernos A325 y A490 con hillo UNC. 		

Tabla LXI Valores de tracción mínima en pernos de ajuste T_b

Fuente: AISC - 2010: Tabla J3.1
De lo que se obtiene:

Tensión Perno					
φRn	13.460 ton				
	Cortante Perno				
φRn	8.076	ton			
Ар	lastamiento Perno)			
φRn	19.845	ton			
φRn	21.603	ton			
φRn min	19.845	ton			
Resiste	encia al deslizami	ento			
φRn,dc	8.6106	ton			
N	umero de pernos				
φRn	8.0763	ton			
Nb	4	pernos			
φRn	32.3052	ton			
φRn>Tu	OK				

Tabla LXII Revisión de estados límites para pernos de conexiones de deslizamiento crítico

Fuente: Autores

Revisada la resistencia nominal al deslizamiento crítico, se observa que es mayor a la resistencia al cortante del perno, por lo que se considera satisfactoria la conexión.

6.2.4. Diseño de los miembros diagonales

Para riostras en V invertida conectadas en la zona central de las vigas, las fuerzas axiales de compresión y tracción que se generan en las diagonales del pórtico son iguales en magnitud, por lo que se deberán diseñar en base a la fuerza descrita al inicio de la sección 6.2 y de manera que su resistencia sea la adecuada frente a las fuerzas de tensión y compresión ejercida en los elementos.

6.2.4.1 Diseño de los miembros a tensión

El diseño de los elementos a tensión se lo realiza de acuerdo a la sección 6.2.1, se calcula el área de la sección necesaria para resistir a la fuerza de tensión de acuerdo a los estados límites de fluencia y fractura, se asume un valor de relación de esbeltez igual a 120 de manera que se calcule el r_{min} que deberá tener la sección.

RE	120				
L	4000	mm			
Ag fluencia	1777.49	mm2			
Ag fractura	1781.62	mm2			
Ag min	1781.62	mm2			
Ag	2.76	pulg2			
r _{min}	33.33	mm			
F	Lenter Autorea				

Tabla LXIII Valores requeridos para selección de perfil

Fuente: Autores

Con los datos obtenidos de área y r_{min} se selecciona el perfil tubular de 200x100x6 mm y se verifica que cumpla con los parámetros establecidos anteriormente.

Perfil Tubular 200x100x6 mm					
t	6.00	mm			
b	200	mm			
h	100	mm			
А	3456.00	mm2			
lx	17939072.00	mm4			
ly	5990272.00	mm4			
A HSS > Ag min	ОК				
rx	72.05	mm			
ry	41.63	mm			

Tabla LXIV Propiedades geométricas del perfil seleccionado

r _{min}	41.63	mm		
Perfil Tubular 200x100x6 mm				
$r_v > r_{min}$	ОК			
KL/r	96.08			

Fuente: Autor	es
---------------	----

Se obtiene el perfil 200x100x6 mm, cabe recalcar que en el modelo inicial se escogió un perfil 200x100x4 mm, dicha sección no es satisfactoria para el estado límite de bloque de cortante, por lo que se aumentó el espesor t de la sección.

6.2.4.2 Diseño de los miembros a compresión

Como se explicó al inicio de la sección 6.2.4 para el diseño del perfil a utilizar como riostra, estos miembros también estarán sujetos a fuerzas de compresión debido a la inversión de esfuerzos generada durante el sismo. A continuación se evaluará la carga crítica de la columna y su resistencia al pandeo flexionante.

De acuerdo con la tabla LXVII de las propiedades geométricas del perfil seleccionado, se concluye que la sección es compacta, no esbelta.

Fuente: Autores						
λf<λp	ОК	OK compacta				
λw<λp	ОК	Sección no esbelta y				
λр		39.74				
λf		33.33				
λw		16.67				
kL/r		96.08				

Tabla LXV Parámetros de esbeltez de alas y almas de la sección

El valor k tomado para la sección es igual a 1, apoyos articulados en los dos extremos del elemento.

La relación de esbeltez calculada $KL/r \le 4.71 \sqrt{E/F_y}$, la falla se da en el intervalo inelástico y su esfuerzo crítico se calcula con:

$$F_e = \frac{\pi^2 E}{(\frac{K L}{r})^2}$$
$$F_{cr} = \left[0.658 \frac{F_y}{F_e}\right] * F_y$$
$$P_{cr} = F_{cr} * A$$

De manera que:

KL/r	96.078				
4.71raiz(E/Fy)	133.68 > KL/r				
Columna corta e intermedia					
Fe	21.80 kg/mm2				
Fcr	15.57 kg/mm2				
Pcr	53.805 ton				
Pcr > Tu	ОК				
Fuente: Autores					

Tabla LXVI Análisis de la carga crítica a compresión del elemento

La carga crítica Pcr es mayor a la carga axial de compresión de diseño, por lo que se considera una sección satisfactoria frente a estos esfuerzos.

6.3. Detallamiento de conexiones y elementos

6.3.1. Elementos de la conexión

Los elementos utilizados para las conexiones 1 y 2, siendo la conexión 1 la unión de las riostras a la parte inferior de las columnas, y la conexión 2 la unión de las riostras a la viga superior del piso, se detallan en la siguiente ilustración:

Figura 6.2 Detalle de elementos empleados para conexión tipo 1 Fuente: Autores

La conexión 1 se definió como una conexión de contacto formada por 4 pernos de ³⁄₄" A325, tanto para la unión placa rigidizadora-placa de conexión, como para la conexión placa de unión-perfil tubular. Para el análisis y diseño de la trabazón se evaluó la capacidad de la placa de conexión y se estableció su material y medidas para que su resistencia sea la adecuada frente a los estados límites que se presentan para este tipo de uniones. De manera análoga se establecen las características de la placa rigidizadora dispuesta en la parte inferior de las columnas y se aumenta su espesor a 8 mm a fin de asegurar su correcto desempeño.

Se estableció el uso del perfil tubular de 200x100x6 mm de acuerdo a los estados límites de fluencia y fractura y se comprobó su resistencia al pandeo torsional y valores λ de manera que se tenga una sección compacta resistente al pandeo que podría presentarse por las cargas axiales de compresión ejercidas durante la inversión de esfuerzos ocasionado por efectos del sismo.

Figura 6.3 Detalle de elementos empleados para conexión tipo 2 Fuente: Autores

La conexión 2 se definió como una conexión de deslizamiento crítico formada por 4 pernos de ³/₄" A325, para la unión placa soldada al patín inferior de la viga de espesor de 6mm al perfil tubular 200x100x6 mm antes descrito.

Se sugiere el uso de rigidizadores transversales que proporcionen una mejor unión alma-ala en las vigas que se conecten los disipadores debido a la concentración de cargas por efectos de los elementos dispuestos y fuerza cortante generada.

6.3.2. Disposición de pernos de conexión

La disposición de los pernos de conexión se realizó en base a las recomendaciones de la AISC 2010, sección J3 que establece:

 La distancia entre centros de perforaciones estándar o ranuradas, no debe ser menor que 2-2/3 veces el diámetro nominal, d, del conector; se prefiere una distancia de 3d.

• La distancia desde el centro de una perforación estándar hasta el borde de una parte conectada en cualquier dirección no debe ser menor que el valor aplicable de la Tabla J3.4.

Tabla LXVII	Valores de	distancia	mínima	al borde	de	pernos d	de conexión
	values ac	uistantoia	mmma	arborac	uc I		

TABLA J3.4 Distancia Mínima al Borde ^[a] , in, desde el Centro del Agujero Estándar ^[b] hasta el Borde de la Parte Conectada							
Diámetro Perno (in)	Distancia Mínima al Borde						
1/2	³ / ₄						
⁵ / ₈	7/ ₈						
³ / ₄ 1							
7/ ₈	⁷ / ₈ 1 ¹ / ₈						
1	1 ¹ / ₄						
1 ¹ / ₈	1 ¹ / ₂						
1 ¹ / ₄	1 ⁵ / ₈						
Sobre 1 1/4	1 ¹/₄ x d						
 De ser necesario, se permite utilizar distancias de borde menores provisto que se satisfacen las disposiciones de la Sección J3.10 y de Sección J4, sin embargo distancias al borde menores que (1) diámetro del perno no son permitidas sin aprobación del ingeniero a cargo. Para agujeros sobretamaño y ranurados, ver la Tabla J3.5. 							

Fuente: American Institute of Steel Construction AISC 360-10 Sección J3 Tabla J3.4

De esta manera se obtiene:

Figura 6.4 Detalle de disposición de pernos para conexión tipo 1 Fuente: Autores

Figura 6.5 Detalle de disposición de pernos para conexión tipo 2 Fuente: Autores

6.4. Costos

Para poder evaluar económicamente la instalación de un sistema de disipación de energía sísmica se consideran los siguientes puntos.

- Costos de los dispositivos.
- Costo del proyecto
- Costos de instalación. Costos directos y gastos generales
- Costos de ensayos y certificación

 Costos de los esfuerzos locales de la estructura requeridos para la instalación de disipadores. En algunos casos el costo de los dispositivos puede ser menor al de los elementos de sujeción del dispositivo a la estructura.

Costos generados por aumento de plazos

Costos de mantención y/o reposición

• Costos de posibles recintos que dejan de utilizarse para instalar los dispositivos

6.4.1. Costos de los dispositivos

Para establecer un presupuesto referencial es necesario estipular los rubros que implican la instalación de los disipadores pasivos histeréticos, con la particularidad de que son dispositivos metálicos de fácil fabricación, unidos a los pórticos mediante pernos y placas soldadas, que deben garantizar la mejor distribución de esfuerzos de tal manera que no atenten contra las capacidades de los elementos estructurales.

En la siguiente tabla se hará una evaluación del peso propio que generan los elementos pasivos, los cuales junto con los precios unitarios, servirán para establecer un presupuesto inicial. Los disipadores son elementos tubulares rectangulares que se tratarán como dos perfiles U para la correcta aplicación de la siguiente fórmula para la determinación del peso por metro lineal. Además, se cuenta con la longitud total de dichos elementos estratégicamente colocados.

U 200x50x6mm						
Dimensión a =	200 mm					
Dimensión b =	50 mm					
Dimensión c =	6 mm					
(Peso Específico) d =	7850 kg/m3					
Peso x ml =	$\left[\frac{a}{1000} + \frac{2b}{1000} - \frac{2c}{1000}\right] - x\frac{d}{1000}x c$					
Peso x ml =	13,56 kg/ml					
Peso x ml (2U) =	27,129 kg/ml					
Longitud total disipadores =	86,18 ml					
Peso total =	2338,03 kg					
Fuente: Autores						

Tabla LXVIII Determinación de pesos para disipadores histeréticos

Los rubros a crear consisten en la provisión e instalación de los disipadores pasivos histeréticos, así como otro rubro dedicado al ensamble de las conexiones de placas rigidizadoras a las vigas y columnas principales. Posteriormente se presentarán los análisis de precios unitarios para estos dos nuevos rubros y se procederá a establecer una comparación porcentual de la variación del presupuesto de la estructura con los disipadores histeréticos respecto al presupuesto indicado para la estructura original, sin ningún tipo de disipador de energía.

ANALISIS DE PRECIOS UNITARIOS

RUBRO:

UNIDAD: KG

DETALLE: DISIPADOR PASIVO HISTERÉTICO

1.- EQUIPOS

DESCRIPCION	CANTIDA D	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNITARIO
Herramientas menores	0,5	\$0,80	\$0,40	0,350	\$0,14
Torcómetro	1,0	\$4,00	\$4,00	0,350	\$1,40
Soldadora Eléctrica	1,0	\$2,00	\$2,00	0,350	\$0,70
			EQUI	POS SUBTOTAL	\$2,24

2.-MANO DE OBRA

DESCRIPCION	CANTIDA D	JORNAL REAL/HOR A	COSTO HORA	RENDIMIENTO	COSTO UNITARIO
Maestro de Obra Categoria C2	0,50	\$3,21	\$1,61	0,350	\$0,56
Fierrero Categoria D2	1,00	\$3,05	\$3,05	0,350	\$1,07
Peon Categoria E2	2,00	\$3,01	\$6,02	0,350	\$2,11
			MANO DE O	BRA SUBTOTAL	\$3,74

3.- MATERIALES

DESCRIPCION	UNIDAD	CANTIDA D	PRECIO UNITARIO	COSTO UNITARIO
Acero Estructural	Kg	1,050	\$0,94	\$0,99
Pernos 3/4" A325	Kg	0,8	\$3,25	\$2,60
Pintura Anticorrosiva	Gln	0,005	\$16,00	\$0,08
Soldadura 60-11	kg	0,020	\$3,00	\$0,06
	\$3,73			

4.- TRANSPORTE

DESCRIPCION	UNIDAD	CANTIDA D	TARIFA	COSTO UNITARIO
	\$0,00			
	\$9,71			

INDIRECTOS Y UTILIDADES	15,00%	\$1,46
OTROS INDIRECTOS	0,00%	\$0,00
		•

COSTO TOTAL DEL RUBRO	\$11,17
-----------------------	---------

ANALISIS DE PRECIOS UNITARIOS

RUBRO: UNIDAD: KG CONEXIONES PARA LOS DISIPADORES HISTERÉTICOS (PLACAS DE DETALLE: ANCLAJE)

1.- EQUIPOS

DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNITARIO	
Herramientas menores	0,5	\$0,80	\$0,40	0,210	\$0,08	
Soldadora Eléctrica	1,0	\$2,00	\$2,00	0,210	\$0,42	
EQUIPOS SUBTOTAL \$						

2.-MANO DE OBRA

DESCRIPCION	CANTIDAD	JORNAL REAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNITARIO
Maestro de Obra Categoria C2	0,25	\$3,21	\$0,80	0,210	\$0,17
Fierrero Categoria D2	1,00	\$3,05	\$3,05	0,210	\$0,64
Peon Categoria E2	1,00	\$3,01	\$3,01	0,210	\$0,63
MANO DE OBRA SUBTOTAL					

3.- MATERIALES

DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO	COSTO UNITARIO
Acero Estructural	Kg	1,050	\$0,94	\$0,99
Soldadura 60-11	kg	0,060	\$3,00	\$0,18
Pintura Anticorrosiva	Gln	0,040	\$16,00	\$0,64
MATERIAL SUBTOTAL				

4.- TRANSPORTE

DESCRIPCION	UNIDAD	CANTIDAD	TARIFA	COSTO UNITARIO	
TRANSPORTE SUBTOTAL					
COSTO DIRECTO					
· · ·					

INDIRECTOS Y UTILIDADES	15,00%	\$0,56
OTROS INDIRECTOS	0,00%	\$0,00
COSTO TOTAL DEL RUBRO		\$4,31

OSTO	TOTAL	DEL RU	JBRO	

\$4,31

VALOR OFERTADO	\$4,31

Estos análisis de precios unitarios fueron hechos en base a valores referenciales, los cuales pueden variar de acuerdo a factores externos. Sin embargo, proporcionan una idea de lo que costaría la fabricación e implementación de estos elementos pasivos y sus respectivas conexiones.

6.4.2. Costos del proyecto

ITEM	DESIGNACION	UNID.	CANTIDAD REAL	P. UNITARIO	P. TOTAL REAL
	EDIFICIO TORRE 4 (GRAL. GÓM	EZ Y PÍC	MONTUFA	R)	\$ 229.527,30
1	SUPER ESTRUCTURA				
1,01	ACERO ESTRUCTURAL	KG	64.814,19	2,64	\$171.109,46
1,02	DISIPADORES PASIVOS HISTERÉTICOS	KG	2.338,03	11,17	\$ 26.115,78
1,03	CONEXIONES PARA DISIPADORES HISTERÉTICOS (PLACAS DE ANCLAJE)	KG	719,59	4,31	\$ 3.101,43
2	LOSAS				
2,01	PLACA COLABORANTE E=0,65	M2	698,25	12,63	\$ 8.818,90
2,02	MALLA ELECTROSOLDA	M2	698,25	7,65	\$ 5.341,61
2,03	CONECTORES	M2	698,25	3,53	\$ 2.464,82
3	ESCALERA				
3,01	ACERO ESTRUCTURAL	KG	4.069,81	2,64	\$ 10.744,30
3,02	PLACA COLABORANTE E=0,65	M2	76,90	12,63	\$ 971,25
3,03	MALLA ELECTROSOLDA	M2	76,90	7,65	\$ 588,29
3,04	CONECTORES	M2	76,90	3,53	\$ 271,46
•			•	TOTAL	\$ 229.527,30

Tabla LXIX Resumen de Costos de Construcción de la "Torre 4"

Fuente: Empresa Contratista KLAERE

El costo de la estructura original alcanza los \$200,310.08 y teniendo un área de construcción de 563.06 m2 se puede indicar que el costo por metro cuadrado alcanza los \$355.75/m2. El análisis de precios unitarios para la estructura original se encuentra en los anexos.

Por otro lado, la estructura con el sistema de disipadores pasivos histeréticos está valorada en \$229,527.30, cuyo costo por metro cuadrado es de \$407.64/m2, se puede observar que el proyecto con el sistema de disipadores ha incrementado en un 14% respecto al proyecto original.

Además los rubros que corresponden al sistema de disipación histerética conforman el 12.7% del presupuesto total correspondiente a este proyecto en estudio. Un valor aceptable considerando el criterio de costo-beneficio con el cual se pretende asegurar los menores daños posibles en la estructura ante cargas sísmicas.

6.4.3. Costo de instalación: costos directos y gastos generales

Los costos directos son aquellos que tienen una influencia primordial en la construcción de la estructura, tal es el caso de:

1.- Materiales, mano de obra, equipos, con los cuales se realizan los rubros diariamente a fin de respetar los plazos y controles de calidad exigidos para cada construcción.

2.- Costos del sistema de disipación de energía.

En el caso de costos indirectos en cada uno de los rubros se estipuló un porcentaje del 15%, con el cual se adiciona a cada rubro el cobro de:

1.- Reparaciones en caso de que la estructura experimente grandes deformaciones ante un evento sísmico.

2.- Daños y pérdidas en el contenido de una edificación, materiales que se deben resguardar ante cualquier situación.

3.- La ganancia que le corresponde a la entidad contratista como honorarios por dirección técnica.

6.5. Instalación

El proceso de instalación de la alternativa propuesta se basa específicamente en actividades de soldadura y conexiones empernadas, en cuyo caso deberán ser usados equipos como soldadoras y torcómetros respectivamente.

La protección del obrero deberá primar ante cualquier circunstancia, se les obligará el uso de cascos protectores, guantes, chalecos, etc, para los especializados en los trabajos de soldadura. Mientras que el obrero que realice el ajuste de los pernos deberá llevar guantes y gafas protectoras. Como primer paso se sueldan las placas de anclaje de 8mm a las conexiones entre columnas y vigas de cada pórtico, se basa en una soldadura de filete con cordones de soldadura de 3/4" en las direcciones X e Y.

Una vez llevados a campo los elementos metálicos denominados Disipadores histeréticos, deberán ser acarreados hacia los pisos superiores pues en esos pisos se obtuvieron las mejores respuestas.

Mediante una placa de conexión se fija el disipador histerético con la placa de anclaje de las columnas, a través de pernos de diámetro de 3/4" A325, en total deberán ser 8 unidades de pernos las que aseguran los desplazamientos máximos críticos de las conexiones.

6.6. Aspecto ambiental

En la siguiente sección se evaluará el impacto ambiental producido por la solución propuesta, describiendo las actividades y recursos afectados debido a las actividades ejecutadas para la construcción del método.

Durante el proceso de construcción de estos elementos, compuestos en su mayor parte por acero, se enlistan las actividades cuyo impacto deberá ser considerado de manera que se controlen sus efectos sobre el ambiente. • Corte y biselado, incluye el corte del material base como placas y perfiles tubulares de acero para armado de los elementos que forman el mecanismo de disipación.

 Armado y perforado de las piezas producidas en corte, dar forma a la estructura metálica. Incluye otros procesos como plegado y rolado en caso de ser necesario.

- Soldadura de en las placas de unión como reforzamiento de la conexión empernada.
- Pintura y sand blasting de la estructura disipadora fabricada.

De las siguientes actividades, se estudian sus impactos ambientales con lo que se obtiene:

Actividad	Aspecto Ambiental
	Generación de residuos sólidos no reciclables
	Riesgo de accidentes
Actividades de corte	Emisión de gases
	Emisión de material particulado
	Emisión de ruido
	Generación de residuos sólidos no reciclables
	Emisión de gases
Actividades de armado	Generación de residuos peligrosos (lubricantes usados)
	Riesgo de accidentes
	Emisión de material particulado
	Emisión de calor

 Tabla LXX Impactos Ambientales de actividades para construcción de elementos disipadores.

Actividad	Aspecto Ambiental		
	Emisión de gases		
A stividadaa da	Emisión de material particulado		
	Riesgo de accidentes		
Soldadula	Emisión de calor		
	Generación de residuos sólidos no reciclables		
	Emisión de material particulado en el aire		
Actividades de sand	Riesgo de accidentes		
blasting y pintura	Emisión de gases		
	Emisión de polvo		
Fuente: Autores			

Las actividades que mayormente causan impactos al ambiente son los trabajos con soldadura eléctrica, sand blasting y pintura en cuanto a la afectación del aire y salud de los trabajadores.

Considerando que la zona de la construcción es céntrica y poblada, el ruido producido por las máquinas de corte y la generación de material particulado presenta también un problema que deberá ser considerado y controlado durante la ejecución de las actividades.

Se establece entonces, que las actividades de construcción de los disipadores están acordes con aquellas que generalmente se realizarían en la obra puesto que se trata de una estructura metálica, sus impactos al medio ambiente no aportan con mayores daños que los descritos anteriormente, pero deberán ser considerados para planteamiento de un plan de mitigación que logre reducir sus impactos.

CONCLUSIONES Y RECOMENDACIONES

CONCLUSIONES

1. Se realizó el análisis estructural de la denominada Torre 4 mediante la generación del modelo en el software ETABS v15.2.0, donde se detalla el proceso de modelamiento de los elementos estructurales como columnas, vigas, losas y escaleras del sistema. Se realizó el análisis dinámico modal definiendo el espectro según las condiciones de la estructura en base a lo detallado por la Norma Ecuatoriana de la Construcción en su capítulo "Riesgo Sísmico" y se obtuvieron las solicitaciones de la estructura y respuesta frente a las cargas impuestas por el sismo.

2. Mediante el análisis de los tres métodos planteados se obtuvieron los resultados para cada uno de ellos y su efecto frente a los desplazamientos forjados en la estructura, resultados que ayudaron a la selección del método de protección sísmica junto con otros criterios de selección.

3. Se seleccionó un sistema de protección sísmica basado en el uso de disipadores pasivos histeréticos, compuestos de placas metálicas que disipan energía por flexión pura al enrollarse por efecto del desplazamiento relativo entre sus extremos. 4. Se realizó el diseño preliminar de los disipadores pasivos histeréticos y se definió la sección de las riostras a colocar, en base a la norma "Seismic Provisions for Structural Steel Buildings" del American Institute of Steel Construction, ANSI/AISC 341-10 que detalla los requerimientos para el diseño de riostras tipo V invertida, de manera que su resistencia sea la adecuada frente a los estados límites que se presentan en este tipo de conexiones.

5. El presupuesto elaborado para el sistema de disipación demostró ser el equivalente en un 12.7% del costo total de la estructura, lo que denota que no hay un aumento excesivo en cuanto a los costos total de la estructura.

6. En el modelo generado con los disipadores pasivos propuestos se obtuvo la reducción en un 58.49% de los desplazamientos máximos en el análisis de la respuesta de la estructura frente a las cargas impuestas por el sismo. La implementación del método genera un incremento en las solicitaciones de los elementos estructurales, se verificó su resistencia y se probaron satisfactorios frente al incremento de cargas.

7. El método escogido se considera adecuado para la estructura en cuestión debido al alto grado de acoplamiento con las condiciones de nuestro país, facilidad de acceso de sus materiales y simplicidad en cuanto a técnicas constructivas, lo que hace al sistema bastante accesible.

8. El desarrollo del presente estudio, análisis y diseño de la solución propuesta, se elaboraron acorde con los valores éticos, morales y responsabilidad social que supone este tipo de trabajo, en base a las normas y reglamentos antes mencionados.

RECOMENDACIONES

1. El uso de métodos de protección sísmica para estructuras actualmente se desarrolla en la mayoría de los países que presentan un alto riesgo sísmico, es importante que cada país realice estudios, ensayos y reglamentos acorde con las necesidades y condiciones locales para cada región, en relación a su capacidad técnica, costos y nivel de protección que se desee para cada estructura de manera que se logre el máximo desempeño de los dispositivos.

2. Se deberán realizar numerosos análisis en cuanto a la disposición de los disipadores pasivos en lo alto de la estructura, esto es de gran importancia en el método y de ello dependerá en gran parte el grado de control y protección que se le proporcione al sistema, es preciso también realizarlo junto con el arquitecto encargado de manera que no afecte en la estética o imposibilite las entradas y salidas del edificio.

3. Los disipadores pasivos histeréticos deberán ser ensayados y estudiados previos a su diseño y aceptación final. El diseño realizado en este anteproyecto solo detalla las conexiones de las placas de unión a los miembros rigidizadores.

4. Se deberán estudiar los tipos de ensayos y mantenimientos que se le dan a estos sistemas de disipación de energía de manera que se garantice su funcionamiento durante un largo periodo dentro de la vida útil de la estructura.

5. Se recomienda realizar un estudio de impacto ambiental de manera que se reduzcan los efectos presentados por implementación del sistema y establecer un plan de mitigación que logre aminorarlos.

6. Actualmente se han desarrollado una gama de sistemas de protección sísmica, el estudio realizado hace referencia a solo tres de ellos, se conoce que no existe un dispositivo disipador que pueda ser utilizado de manera general y presente los más altos beneficios, se recomienda el estudio de nuevos sistemas de manera que se logre obtener la mejor alternativa para la estructura.

7. Evaluar el uso de sistemas de protección sísmica combinados como es el caso de los amortiguadores viscoelásticos en forma horizontal, en la base del edificio trabajando en conjunto con el sistema de aislamiento basal o demás combinaciones que se puedan presentar cuidando siempre la respuesta de la estructura de manera que se logre el más óptimo procedimiento sin afectaciones en sus modos de vibraciones.

BIBLIOGRAFÍA

- [1] Federal Emergency Managment Agency. Recomended Seismic Design Criteria for New Steel Moment Frame Buildings . California, USA, 2000.
- [2] Morales Díaz, L. J., & Contreras Bálbaro, J. J. Tesis para optar el Título de Ingeniero Civil. Protección de una Edificación existentes con Disipadores de energía. Lima, Perú: Pontificia Universidad Católica del Perú, 2012.
- [3] Aguilar Mantilla, K. T. Estudio Comparativo de Edificios de Acero de gran Altura con Diagonales Excéntricas, Concéntricas y Diagonales con Amortiguadores en la Ciudad de Quito. Quito-Ecuador: Pontificia Universidad Católica del Ecuador, 2015.
- [4] American Concrete Institute. Requisitos de Reglamento para Concreto Estructural (ACI 318S-14) y Comentario (ACI 318SR-14). Estados Unidos: Comité ACI 318, 2015.
- [5] Fajfar, P., & Krawinkler, H. *Analysis and Design of Reinforced Concrete Buldings*. Stanford University, USA: Taylor and Francis Group, 2005.
- [6] Federal Emergency Managment Agency. Prestandard and Commentary for the Seismic Rehabilitation of Buildings. California, Estados Unidos: American Society of Civil Engineers, 2000.
- [7] Mayorga Vela, C. A. (2011). Facultad de Ingeniería. Departamento de Ingeniería Civil y Agrícola, Posgrado en Estructuras. *Caracterización mecánica y modelamiento estructural de un disipador pasivo de energía de tipo arriostramiento de pandeo restringido.* Universidad Nacional de Colombia, Bogotá, Colombia. [online]. Disponible en: http://repositorio.puce.edu.ec/bitstream/handle/22000/8473/ESTUDIO%20C OMPARATIVO%20DE%20EDIFICIOS%20DE%20ACERO%20DE%20GRAN %20ALTURA%20CON%20DIAGONALES%20EXC%C3%89NTRICAS,%20C ONC%C3%89NTRICAS%20Y%20DIAGONALES%20CON%20AMORTI~1.p df?sequence=1&isAllowed=y
- [8] McCormac, J., & Csernak, S. *Diseño de Estructura de Acero* (Quinta Edición ed.). New Jersey, USA.: Alfaomega, 2013.

- [9] Norma Ecuatoriana de la Construcción. En *Peligro Sísmico Diseño Sismo Resistente*. Ecuador: Dirección de Comunicación Social, MIDUVI, 2015.
- [10] Oviedo, J. A., & Duque, M. (Diciembre de 2006). Sistemas de Control de Respuesta Sísmica en Edificaciones. *Revista EIA*, 105-120.
 [online]. Disponible en: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S1794-12372006000200010
- [11] Palacio Gonzales, J., Blum Gutiérrez, E., Maruri Díaz, R., Ayón, H., & Rodríguez, J. Contribución al estudio de riesgo sísmico en el Ecuador. Acta Científica Ecuatoriana, 1988. Vol. 1 No. 1, 9-22.
- [12] Paulay, T., & Priestley, M. Seismic Design of Reinforced Concrete and Masonry Buildings. New Zealand, San Diego: Wiley Interscience Publications, 1992.
- [13] Pazmiño Lincago, H. P. (Marzo de 2015). Diseño Comparativo para Edificios en Estructura de Acero con Diversos tipos de Arriotramiento Lateral: Caso Muros de Corte. Proyecto previo a la obtención del Título de Ingeniero Civil. Mención Estructuras. Quito, Ecuador : Escuela Politécnica Nacional . [online]. Disponible en: http://bibdigital.epn.edu.ec/handle/15000/10922
- [14] PhD Symans, M. D. Seismic Protective Systems: Passive Energy Dissipation. Instructional Material Complementing FEMA 451, Design Examples. California, EEUU, 2003
- [15] Pimiento, J., Salas, A., & Ruiz1, D. (2014). Desempeño sísmico de un pórtico con disipadores de energía pasivos de placas ranuradas de acero. *Revista ingeniería de construcción. Versión On-line ISSN 0718-5073.* [online]. Disponible en: http://www.scielo.cl/scielo.php?script=sci_arttext&pid=S0718-50732014000300005
- [16] Sánchez Abarca, K. A. (Diciembre de 2015). Diseño comparativo de estructuras de acero con y sin columnas. Quito, Ecuador: Universidad San Francisco de Quito. [online]. Disponible en: http://repositorio.usfq.edu.ec/handle/23000/5000
- [17] Soria Carrasco, J. W. (2015). Diseño Comparativo para Edificios en Estructuras de Acero con Diversos Tipos de Arriostramiento Lateral: Caso

Diagonales en Punta.Escuela Politécnica Nacional, Quito. [online]. Disponible en: http://bibdigital.epn.edu.ec/handle/15000/10478

- [18] Timothy P, M. Shear Walls . En *Seismic Retrofit Training* (págs. 17-28). California, 2013.
- [19] Wilson, E. L. Three Dimensional Static and Dynamic Analysis of Structures A Physical Approach with Emphasis on Earthquake Engineering. California: University of California at Berkeley, 1995
- [20] Zambrano Leiva , P. (2008). Diseño Sismorresistente de Conexiones Rígidas Viga-Columna y Arriostramientos Excéntricos para un Edificio de Acero de 15 Pisos Emplazado en la Ciudad de Valdivia. Valdivia, Chile. online]. Disponible en: http://dspace.espoch.edu.ec/bitstream/123456789/3531/1/15T00574.pdf

ANEXOS

1. PLANOS ESTRUCTURALES DE LA TORRE 4

ANEXO 1				
PLANOS	ARCHIVO	DETALLE		
1 CIMENTACIÓN TORRE 4	CAPWELL-CIMENTAC ION-T4. pdf	Contiene el detalle de la subestructura para la torre 4. Se observa el armado de los dados de hormigón.		
2 PÓRTICOS TORRE 4	CAPWELL-T4-29JUN 2016 PÓRTICOS ELE\	Contiene el detalle en elevación de los pórticos que conforman la torre 4		
3 ALZADO DE COLUMNAS	CAPWELL-T4-29JUN 2016 COLUMNAS.pdf	Contiene las transiciones del ensamble de columnas en elevación para los respectivos pórticos de la torre 4		
4 IMPLANTACIÓN DE LOSA 1 Y LOSA 2	CAPWELL-T4-29JUN 2016 PRIMERA Y SEC	Contiene el diseño de las losas de primer y segundo nivel de la torre 4		
5 IMPLANTACIÓN DE LOSA 3 Y LOSA 4	CAPWELL-T4-29JUN 2016 TERCERA Y CU/	Contiene el diseño de las losas de tercer y cuarto nivel de la torre 4		
6 IMPLANTACIÓN DE LOSA 5 Y LOSA 6	CAPWELL-T4-29JUN 2016 QUINTA SEXTA	Contiene el diseño de las losas de quinto y sexto nivel de la torre 4		
7 IMPLANTACIÓN DE CUBIERTA	CAPWELL-T4-29JUN 2016 CUBIERTA PLAN	Contiene el diseño de cubierta de la torre 4 y la vista en elevación de las diagonales		
8 VIGAS PRINCIPALES Y SECUNDARIAS	CAPWELL-T4-29JUN 2016 SECCIONES VIG	Contiene el diseño de las secciones de las vigas usadas como elementos principales y de apoyo		
9 DETALLE DE VOLADOS	CAPWELL-T4-29JUN 2016 CERCHA Y VOL/	Contiene el diseño de losa inclinada y detalles para asientos de suites corporativas		
10 DETALLE DE CONECTORES DE CORTE	CAPWELL-T4-29JUN 2016 CONECTORES E	Contiene el detalle de los conectores usado para el armado de la losa metálica		
11 DETALLE ESCALERAS 1	CAPWELL-T4-29JUN 2016 DETALLE ESCAL	Contiene los cortes para la observación de las escaleras y las implantaciones respectivas		

12 DETALLE ESCALERAS 2	CAPWELL-T4-29JUN 2016 DETALLE ESCAL	Contiene los cortes para la observación de las escaleras y las implantaciones respectivas
13 IMPLANTACIÓN ARQUITECTÓNICA	EBP-ARQ-FINAL-TOR RE 4 ARQUITECTÓNI	Contiene la implantación de la torre 4, con su respectiva ubicación y niveles.
14 RENDER TORRE 4	RENDER TORRE 4.jpg	Esquema en 3 dimensiones del Estadio George Capwell

2. MATRIZ SCORING PARA EVALUACIÓN DE PROPUESTAS

Criterios de selección de alternativas		ASB	DPH	DPV
			r _i	
Alto porcentaje de reducción de desplazamientos en los entrepisos superiores	5	9	8	7
Baja probabilidad de reemplazo post-sismo de los dispositivos de control	5	8	4	5
Reducción del daño estructural por sismo	5	9	7	7
Baja afectación en el aspecto arquitectónico de la estructura	5	8	4	4
Larga vida útil de los dispositivos	4	8	8	4
Bajo costo de mantenimiento de los dispositivos de control	4	3	9	7
Alto control de daño en contenidos	4	8	7	8
Bajo impacto ambiental	4	5	8	7
Bajo costo de instalación y puesta en obra de los dispositivos de control	3	2	9	7
Bajo costo de reemplazo de los dispositivos de control	3	1	8	6
Bajo costo de fabricación de los dispositivos de control	3	1	9	7
Instalación simple en obra de los dispositivos de control	3	7	9	7
Bajo impacto en las prácticas de construcción actuales	3	7	9	7
Fácil consecución de materiales necesarios para la fabricación de los dispositivos				
en el país	3	5	9	2
No requiere mano de obra altamente calificada para la instalación de los dispositivos				
de control	2	5	8	6
Baja interrupción del continuo funcionamiento de estructuras indispensables en el reemplazo de los dispositivos de control	1	2	5	5
Puntuación		347	423	344

Tabla LXXI Matriz de scoring para análisis multicriterio y selección entre las alternativas propuestas

Fuente: Autores

3. DETALLE DEL ELEMENTO DISIPADOR PROPUESTO

ANEXO 2				
PLANOS	ARCHIVO	DETALLE		
1 ANÁLISIS		Contiene el detalle de la		
ESTRUCTURAL Y		disposición de los		
RESPUESTA SÍSMICA	ANEXO 2.pdf	disipadores pasivos		
DEL EDIFICIO TORRE		histeréticos y detalle de la		
4 DEL ESTADIO		conexión empernada		
CAPWELL - ESTUDIO				
DE MÉTODOS DE				
PROTECCIÓN				
SÍSMICAS PARA LA				
ESTRUCTURA				

4. ANÁLISIS DE PRECIOS UNITARIO DE LA TORRE 4

ANALISIS DE PRECIOS UNITARIOS

RUBRO:UNIDAD:DETALLE:PLACA COLABORANTE DECK METÁLICO 0,65MM

1.- EQUIPOS

DESCRIPCION	CANTIDA D	TARIFA	COSTO HORA	RENDIMIENT O	COSTO UNITARI O
Herramientas menores	0,5	\$0,80	\$0,40	0,098	\$0,04
	•		EQUIP	OS SUBTOTAL	\$0,04

M2

2.-MANO DE OBRA

DESCRIPCION	CANTIDA D	JORNAL REAL/HORA	COSTO HORA	RENDIMIENT O	COSTO UNITARI O
Maestro Soldador Especializado C1	0,25	\$3,38	\$0,85	0,098	\$0,08
Soldador categoria D2	1,00	\$3,05	\$3,05	0,098	\$0,30
Peon Categoria E2	2,00	\$3,01	\$6,02	0,098	\$0,59
		М	ANO DE OB	RA SUBTOTAL	\$0,97

3.- MATERIALES

DESCRIPCION	UNIDAD	CANTIDA D	PRECIO UNITARIO	COSTO UNITARI O
Plancha Colaborante Deck e=0,65 mm inc. Accesorios	m2	1,05	\$9,50	\$9,98
		MATERI	AL SUBTOTAL	\$9,98

4.- TRANSPORTE

DESCRIPCION	UNIDAD	CANTIDA D	TARIFA	COSTO UNITARI O
TRANSPORTE SUBTOTAL				\$0,00
COSTO DIRECTO			\$11,78	

INDIRECTOS Y UTILIDADES	15,00%	\$1,65
OTROS INDIRECTOS	0,00%	\$0,00
COSTO TOTAL DEL RUBRO		\$12,63
VALOR OFERTADO

\$12,63

ANALISIS DE PRECIOS UNITARIOS

RUBRO: DETALLE: MALLA ELECTROSOLDADA R-131 (5.5-15) UNIDAD:

M2

1 EQUIPOS					
DESCRIPCION	CANTIDA D	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNITARI O
Herramientas menores	0,5	\$0,80	\$0,40	0,215	\$0,09
EQUIPOS SUBTOTAL					

2.-MANO DE OBRA

DESCRIPCION	CANTIDA D	JORNAL REAL/HOR A	COSTO HORA	RENDIMIENTO	COSTO UNITARI O
Maestro de Obra Categoria C2	0,40	\$3,21	\$1,28	0,215	\$0,28
Fierrero Categoria D2	1,00	\$3,05	\$3,05	0,215	\$0,66
Peon Categoria E2	2,00	\$3,01	\$6,02	0,215	\$1,29
			MANO DE O	OBRA SUBTOTAL	\$2,23

3.- MATERIALES

DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO	COSTO UNITARI O	
Malla Electrosoldada de 5,5 mm. 15x15 cm.	m2	1,050	\$4,07	\$4,27	
Alambre recosido # 18	Kg	0,042	\$1,40	\$0,06	
MATERIAL SUBTOTAL					

4.- TRANSPORTE

DESCRIPCION	UNIDAD	CANTIDAD	TARIFA	COSTO UNITARI O	
TRANSPORTE SUBTOTAL					
COSTO DIRECTO					

INDIRECTOS Y UTILIDADES	15,00%	\$1,00
OTROS INDIRECTOS	0,00%	\$0,00
COSTO TOTAL DEL RUBRO		\$7,64
VALOR OFERTADO		\$7,64

ANALISIS DE PRECIOS UNITARIOS

RUBRO:

UNIDAD:

M2

DETALLE: CONECTORES DE CORTE

1.- EQUIPOS

DESCRIPCION	CANTIDA D	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNITARIO
Herramientas menores	0,5	\$0,80	\$0,40	0,250	\$0,10
Soldadora Eléctrica	1,0	\$2,00	\$2,00	0,250	\$0,50
EQUIPOS SUBTOTAL					\$0,60

2.-MANO DE OBRA

DESCRIPCION	CANTIDA D	JORNAL REAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNITARIO
Maestro de Obra Categoria C2	0,25	\$3,21	\$0.80	0,250	\$0,20
Soldador categoria D2	1,00	\$3,05	\$3,05	0,250	\$0,76
Peon Categoria E2	1,00	\$3,01	\$3,01	0,250	\$0,75
MANO DE OBRA SUBTOTAL					

3.- MATERIALES

DESCRIPCION	UNIDAD	CANTIDAD	PRECIO UNITARIO	COSTO UNITARIO
Conectores	Kg	0,550	\$0,94	\$0,52
Soldadura 60-11	kg	0,080	\$3,00	\$0,24
	\$0,76			

4.- TRANSPORTE

DESCRIPCION	UNIDAD	CANTIDAD	TARIFA	COSTO UNITARIO
	\$0,00			
	\$3,07			

INDIRECTOS Y UTILIDADES	15,00%	\$0,46
OTROS INDIRECTOS	0,00%	\$0,00
COSTO TOTAL DEL RUBRO		\$3,68
VALOR OFERTADO		\$3,53

ANALISIS DE PRECIOS UNITARIOS

RUBRO:

UNIDAD:

KG

DETALLE: ACERO ESTRUCTURAL (PROVISIÓN Y MONTAJE)

1.- EQUIPOS

DESCRIPCION	CANTIDAD	TARIFA	COSTO HORA	RENDIMIENTO	COSTO UNITARIO
Herramientas menores	0,5	\$0,80	\$0,40	0,150	\$0,06
Soldadora Eléctrica	1,0	\$2,00	\$2,00	0,150	\$0,30
			EC	UIPOS SUBTOTAL	\$0,36
2MANO DE OBR	4				
DESCRIPCION	CANTIDAD	JORNAL REAL/HORA	COSTO HORA	RENDIMIENTO	COSTO UNITARIO
Maestro de Obra Categoria C2	0,25	\$3,21	\$0,80	0,150	\$0,12
Fierrero Categoria D2	1,00	\$3,05	\$3,05	0,150	\$0,46
Peon Categoria E2	1,00	\$3,01	\$3,01	0,150	\$0,45
			MANO DE	OBRA SUBTOTAL	\$1,03
3 MATERIALES					
DESCRIPC	ION	UNIDAD	CANTIDAD	PRECIO UNITARIO	COSTO UNITARIO
Acero Estructural		Kg	1,050	\$0,94	\$0,99
Soldadura 60-11		kg	0,060	\$3,00	\$0,18
Pintura Anticorrosiva		Gln	0,040	\$16,00	\$0,64
			MA	TERIAL SUBTOTAL	\$1,81
4 TRANSPORTE					
DESCRIPC	ION	UNIDAD	CANTIDAD	TARIFA	COSTO UNITARIO
			TRANS	PORTE SUBTOTAL	\$0,00
COSTO DIRECTO					\$3,20
INDIRECTOS Y UTILIDADES 15,00%					\$0,48
	OTROS INDIRECTOS 0,00%				
	COSTO TOTAL DEL RUBRO				
VALOR OFERTADO					\$3,68